Engineering Data AC Servo Actuators CHA ## Contents | 1. | General | 03 | |------------|---|----| | 1.1 | Description of Safety Alert Symbols | | | 1.2 | Disclaimer and Copyright | | | | | | | 2. | Safety and Installation Instructions | | | 2.1 | Hazards | | | 2.2 | Intended Purpose | | | 2.3 | Non Intended Purpose | | | 2.4 | Declaration of Conformity | | | 3. | Technical Description | | | 3.1 | Product Description | | | 3.2 | Ordering Code | | | 3.3 | Technical Data | | | 5.5 | 3.3.1 General Technical Data | | | | 3.3.2 Actuator Data | | | | 3.3.3 Dimensions | | | | 3.3.4 Accuracy | | | | 3.3.5 Torsional Stiffness | | | | 3.3.6 Output Bearing | | | | 3.3.7 Motor Feedback Systems | | | | 3.3.8 Temperature Sensors | | | | 3.3.9 Electrical Connections | | | | 3.3.10 Options | | | | | | | 4. | Actuator Selection Preocedure | 67 | | 4.1 | Selection Procedure and Calculation Example | | | 4.2 | Calculation of the Torsion Angle | | | 4.3 | Output Bearing | | | | 4.3.1 Lifetime Calculation | | | | 4.3.2 Angle of Inclination | | | 5. | Installation and Operation | 75 | | | Transport and Storage | | | 5.1 | Installation | | | 5.2
5.3 | Mechanical Installation | | | 5.3
5.4 | | | | | Electrical Installation | | | 5.5
5.6 | Commissioning | | | | Overload ProtectionProtection against Corrosion and Penetration od Liquids and Debris | | | 5.7
5.8 | Shutdown and Maintenance | | | 5.0 | Shutuowh and Maintenance | 70 | | 6. | Decommissioning and Disposal | 80 | | 7. | Glossary | 81 | | 7.1 | Technical Data | | | 7.2 | Labelling, Guidelines and Regulations | | | 0 | | | | 8. | Appendix | | | 8.1 | Declaration of Conformity CHA-14A CHA-17A | | | 8.2 | Declaration of Conformity CHA-20A CHA-58A | 89 | #### 1. General #### About this documentation This document contains safety instructions, technical data and operation rules for servo actuators and servo motors of Harmonic Drive AG. The documentation is aimed at planners, project engineers, commissioning engineers and machine manufacturers, offering support during selection and calculation of the servo actuators, servo motors and accessories. #### Rules for storage Please keep this document for the entire life of the product, up to its disposal. Please hand over the documentation when re-selling the product. #### **Additional documentation** For the configuration of drive systems using the products of Harmonic Drive AG, you may require additional documents. Documentation is provided for all products offered by Harmonic Drive AG and can be found in pdf format on the website. www.harmonicdrive.de #### Third-party systems Documentation for parts supplied by third party suppliers, associated with Harmonic Drive® components, is not included in our standard documentation and should be requested directly from the manufacturers. Before commissioning servo actuators and servo motors from Harmonic Drive AG with servo drives, we advise you to obtain the relevant documents for each device. #### Your feedback Your experiences are important to us. Please send suggestions and comments about the products and documentation to: Harmonic Drive AG Marketing and Communications Hoenbergstraße 14 65555 Limburg / Lahn Germany E-Mail: info@harmonicdrive.de ## 1.1 Description of Safety Alert Symbols | Symbol | Meaning | |------------------|--| | A DANGER | Indicates an imminent hazardous situation. If this is not avoided, death or serious injury could occur. | | ⚠ WARNING | Indicates a possible hazard. Care should be taken or death or serious injury may result. | | ATTENTION | Indicates a possible hazard. Care should be taken or slight or minor injury may result. | | ADVICE | Describes a possibly harmful situation. Care should be taken to avoid damage to the system and surroundings. | | INFORMATION | This is not a safety symbol. This symbol indicates important information. | | | Warning of a general hazard. The type of hazard is determined by the specific warning text. | | | Warning of dangerous electrical voltage and its effects. | | | Beware of hot surfaces. | | | Beware of suspended loads. | | | Precautions when handling electrostatic sensitive components. | ## 1.2 Disclaimer and Copyright The contents, images and graphics contained in this document are predected by copyright. In addition to the copyright, logos, fonts, company and product names can also be predected by brand law or trademark law. The use of text, extracts or graphics requires the permission of the publisher or rights holder. We have checked the contents of this document. Since errors cannot be ruled out entirely, we do not accept liability for mistakes which may have occurred. Notification of any mistake or suggestions for improvements will be gratefully received and any necessary correction will be included in subsequent editions. ## 2. Safety and Installation Instructions Please take note of the information and instructions in this document. Specialy designed models may differ in technical detail. If in doubt, we strong recommend that you contact the manufacturer, giving the type designation and serial number for clarification. #### 2.1 Hazards Electric servo actuators and motors have dangerous live and redating parts. All work during connection, operation, repair and disposal must be carried out by qualified personnel as described in the standards EN50110-1 and IEC 60364! Before starting any work, and especially before opening covers, the actuator must be properly isolated. In addition to the main circuits, the user also has to pay attention to any auxilliary circuits. #### Observing the five safety rules: - Disconnect mains - Prevent reconnection - Test for absence of harmful voltages - Ground and short circuit - Cover or close off nearby live parts The measures taken above must only be withdrawn when the work has been completed and the device is fully assembled. Improper handling can cause damage to persons and property. The respective national, local and factory specific regulations must be adhered to. The surface temperature of gears, motors and actuators can exceed 55 degrees Celsius. The hot surfaces should not be touched. ## ADVICE Cables must not come into direct contact with hot surfaces. Electric, magnetic and electromagnetic fields are dangerous, in particular for persons with pacemakers, implants or similiar. Vulnerable groups must not be in the immediate vicinity of the products themselves. Built-in holding brakes alone are not functional safe. Particularly with unsupported vertical axes, the functional safety and security can only be achieved with additional, external mechanical brakes. The successful and safe operation of gears, servo actuators and motors requires proper transport, storage and assembly as well as correct operation and maintenance. #### **ADVICE** Use suitable lifting equipment to move and lift gears, servo actuators and motors with a weight > 20 kg. ## INFORMATION Special versions of products may differ in the specification from the standard. Further applicable data from data sheets, catalogues and offers of the special version have to be considered. ## 2.2 Intended Purpose The Harmonic Drive® servo actuators and motors are intended for industrial or commercial applications. They comply with the relevant parts of the harmonised EN 60034 standards series. Typical areas of application are robotics and handling, machine tools, packaging and food machines and similar machines. The servo actuators and motors may only be operated within the operating ranges and environmental conditions shown in the documentation (altitude, degree of predection, temperature range etc). Before plant and machinery which have Harmonic Drive® servo actuators and motors built into them are commissioned, the compliance must be established with the Machinery Directive, Low Voltage Directive and EMC guidelines. Plant and machinery with inverter driven motors must satisfy the predection requirements in the EMC guidelines. It is the responsibility of the installer to ensure that installation is undertaken correctly. Signal and power lines must be shielded. The EMC instructions from the inverter manufacturer must be observed in order that installation meets the EMC regulations. ## 2.3 Non Intended Purpose The use of servo actuators and motors outside the areas of application mentioned above or, inter alia, other than in the operating areas or environmental conditions described in the documentation is considered as non-intended purpose. ## ADVICE #### Direct operating from the mains supply is not allowed. The following areas of application are, inter alia, those considered as non-intended purpose: - Aerospace - Areas at risk of explosion - · Machines specially constructed or used for a nuclear purpose whose breakdown might lead to the emission of radio-activity - Vacuum - Machines for domestic use - Medical equipment which comes into direct contact with the human body - Machines or equipment for transporting or lifting people - Special devices for use in annual markets or leisure parks #### 2.4 Declaration of Conformity The Harmonic Drive® servo actuators and motors described in the engineering data comply with the Low Voltage Directive. A copy of the EC conformity declaration is supplied in the appendix. In accordance with the Machinery Directive, Harmonic Drive® servo actuators and servo motors are electrical equipment for the use within certain voltage limits as covered by the Low Voltage Directive and thus excluded from the scope of the Machinery Directive. Commissioning is prohibited until the final product conforms to the Machinery Directive. ## 3. Technical Description ## 3.1 Product Description # Largest hollow shaft with precision output bearing CHA Series Hollow Shaft Servo Actuators combine a synchronous
servo motor, Unit from the CPU-H Series, feedback sensor and a high capacity precision output bearing. Available in eight sizes with gear ratios between 30 and 160:1, the actuators can provide maximum torques from 8 to 1840 Nm. The output bearing with high tilting capacity often allows direct attachment of heavy payloads without the need for further support, thereby providing simple and space saving design installations. To adapt to your specific application, the CHA Series offers many possible combinations when selecting the motor winding, Motor feedback system, brake, various sensors and cable as well as connector options. The integrated hollow shaft can be used to feed through supply lines or services for additional axes, enabling space saving designs with minimal installation dimensions required. With a reinforced output bearing offering maximum tilting rigidity, the actuators can easily absorb and accurately guide heavy payloads. The accurate positioning of the actuator ensures stable machine characteristics, increased operating reliability and consistent quality. With high predection ratings and corrosion resistance, the series is perfectly suited for use in harsh and demanding environmental conditions. By combining the CHA Actuators with the specially adapted YukonDrive® Servo Controllers, it is possible to provide a single source supply for a pre-configured drive system tailored to suit your application. Alternatively, the flexible configuration of the actuator ensures compatibility with almost any servo controller on the market. ## 3.2 Ordering Code Table 9.1 | CHA 14A 30 50 80 100 120 160 E | Series | Size
Version | | | Ra | atio | | | Motor winding and connector configuration | Motor feed-
back system | Brake | Option 1 | Option 2 | Special
design | |---|--------|--|----------------|----------------------------------|----------------------------|--|--|--------------------------|---|---|-------|----------|----------|-------------------| | | СНА | 17A
20A
25A
32A
40A
50A | 30
30
30 | 50
50
50
50
50
50 | 80
80
80
80
80 | 100
100
100
100
100
100 | 120
120
120
120
120
120 | 160
160
160
160 | L | S1024 ¹⁾
M1024 ¹⁾
M512P
RES
D2048 | В | Sensor | connec- | to customer | Ordering code C1024 CHA - 20A 100 H В EC Table 9.2 | Motor winding and connector configuration | | | | | | | | |---|---------------|---------------------------|--|--|--|--|--| | Size
Version | Ordering code | Maximum DC bus
voltage | | | | | | | 14A | Е | 49.\/DC | | | | | | | 17A | _ | 48 VDC | | | | | | | 14A | | | | | | | | | 17A | | | | | | | | | 20A | | | | | | | | | 25A | | | | | | | | | 32A | H, L, N | 680 VDC | | | | | | | 40A | | | | | | | | | 50A | | | | | | | | | 58A | | | | | | | | Table 9.3 | connector configuration | | | | | | | | | |-------------------------|-------------------|----------------|-----------------------------|-----------------|----------------|--|--|--| | Ordering code | Motor
feedback | Motor | Motor
feedback
system | Cable
outlet | connec-
tor | | | | | Н | C1024 | | | Х | | | | | | Н | M512P | 6 pin | 17 pin (M23) | | Х | | | | | Н | M1285 | (M23) | | Χ | | | | | | Н | RES | | 12 pin (M23) | Χ | | | | | | Н | S1024 | without | without | Χ | | | | | | Н | M1024 | without | WILIIOUL | Χ | | | | | | L | S1024 | 8 pin | 17 pin (M23) | Χ | | | | | | L | M1024 | (M23) | 123) 17 111 (14123) | Χ | | | | | | N | M128S | 0 nin | | Χ | | | | | | N | RES | 8 pin
(M17) | 17 pin (M17) | X | | | | | | N | D2048 | (17117) | | Χ | | | | | | Е | RES | 0 nin | | | X | | | | | E | D2048 | 8 pin
(M17) | 17 pin (M17) | | X | | | | | Е | M128S | (10(17) | | | X | | | | Table 9.4 | Motor feedback system | | | | | | | |-----------------------|----------------------|-------------|--|--|--|--| | Ordering code | Тур | Protocol | | | | | | C1024 | Incremental | - | | | | | | S1024 | Single turn absolute | HIPERFACE® | | | | | | M1024 | Multi-turn absolute | nipekrace - | | | | | | M512P | Muiti-turn absolute | EnDat® | | | | | | RES | Resolver | | | | | | | D2048 | Incremental | | | | | | | M128S | Multi-turn absolute | SSI | | | | | Table 9.5 | Option 1 | | | | | | |---------------|--|--|--|--|--| | Ordering code | Description | | | | | | EC | Single turn absolute EnDat®
Encoder system at the gear output | | | | | Table 9.6 | Option 2 | | | | | | |---------------|--------------------------------|--|--|--|--| | Ordering code | Description | | | | | | К | Cable outlet axial | | | | | | R | connector axial (only M512P) | | | | | | S | connector radial (only M512P) | | | | | | - | Standard (cable outlet radial) | | | | | Clarification of the technical data can be found in the Glossary 1018854 10/2014 9 Variations in **bold print** are available at short notice, subject to prior sale. ¹⁾ The availability of the motor feedback systems S1024 and M1024 is limited until approximately 2016 due to the availability of some electronic components! ## Combinations Table 10.1 | Table 10.1 | | | | | | | | | | |---|-------|------|------|-----|------|----------------|------------------|------|-----| | Size
Version | | 14A | 17A | 20A | 25A | 32A | 40A | 50A | 58A | | | 30 | • | • | • | • | • | - | - | - | | | 50 | • | • | • | • | • | • | • | • | | Ratio | 80 | • | • | • | • | • | • | • | • | | Natio | 100 | • | • | • | • | • | • | • | • | | | 120 | - | • | • | • | • | • | • | • | | | 160 | - | - | • | • | • | • | • | • | | | E | • | • | - | - | - | - | - | - | | Motor winding and connector configuration | Н | • | • | • | • | • | • | • | • | | Motor winding and connector corniguration | L | - | - | • | • | • | • | • | • | | | N | • | • | - | - | - | - | - | - | | | C1024 | - | - | • | • | • | • | • | • | | | S1024 | - | - | • | • | • | • | • | • | | | M1024 | - | - | • | • | • | • | • | • | | Motor feedback system | M512P | - | - | • | • | • | • | • | • | | | RES | • | • | 0 | 0 | 0 | 0 | 0 | 0 | | | D2048 | • | • | - | - | - | - | - | - | | | M128S | • | • | - | - | - | - | - | - | | Brake | В | • | • | • | • | • | • | • | • | | Option 1 (Sensor) | EC | - | - | • | • | • | • | • | • | | | K | O 1) | O 1) | 0 | 0 | 0 | 0 | 0 | 0 | | Option 2 (Cable/ connector) | R | - | - | | Only | , in conjunct | tion with MS | 512D | | | | S | - | - | | UIII | y iii conjunci | LIUII WILII IVIS | ובר | | \bullet available \circ on request – not available $^{\rm 1)}$ Only for resolver and with increased length ## 3.3 Technical Data ## 3.3.1 General Technical Data #### CHA-xxA-E Table 11.1 | Insulation class (EN 60034-1) | | F | |---|------------------|---| | Insulation resistance (500VDC) | МΩ | 100 | | Insulation voltage (10s) | V _{rms} | 600 | | Lubrication | | Harmonic Drive Flexolub A1 | | Degree of predection (EN 60034-5) | | IP65 | | Ambient operating temperature | ° C | 0 40 | | Ambient storage temperature | ° C | -20 60 | | Relative humidity (without condensation) | % | 20 80 | | Vibration resistance (DIN IEC 68 Teil 2-6, 10 500 Hz) | g | 5 | | Shock resistance (DIN IEC 68 Teil 2-27, 18 ms) | g | 30 | | Temperature sensors | | 1 x KTY 84-130 // 1 x PTC 116-K135-145° C | #### CHA-xxA-H/N Table 11.2 | Insulation class (EN 60034-1) | | F | |---|------------------|---| | Insulation resistance (500VDC) | МΩ | 100 | | Insulation voltage (10s) | V _{rms} | 2500 | | Lubrication | | Harmonic Drive Flexolub A1 | | Degree of predection (EN 60034-5) | | IP65 | | Ambient operating temperature | ° C | 0 40 | | Ambient storage temperature | ° C | -20 60 | | Altitude (a. s. l.) | m | < 1000 | | Relative humidity (without condensation) | % | 20 80 | | Vibration resistance (DIN IEC 68 Teil 2-6, 10 500 Hz) | g | 5 | | Shock resistance (DIN IEC 68 Teil 2-27, 18 ms) | g | 30 | | Temperature sensors | | 1 x KTY 84-130 // 1 x PTC 116-K135-145° C | The continuous operating characteristics specified in the following refer to a temperature rise of the motor winding of 100 K at an ambient temperature of 40 degrees Celsius. The continuous operating characteristic curve applies to actuators mounted on an aluminium plate with the following dimensions. Table 11.3 | Series | Size
Version | Unit | Dimensions | | | | | |--------|-----------------|------|----------------|--|--|--|--| | | 14A | [mm] | 200 x 200 x 6 | | | | | | | 17A | [mm] | 300 x 300 x 15 | | | | | | | 20A | [mm] | 300 x 300 x 15 | | | | | | CHA | 25A | [mm] | 350 x 350 x 18 | | | | | | СПА | 32A | [mm] | 350 x 350 x 18 | | | | | | | 40A | [mm] | 400 x 400 x 20 | | | | | | | 50A | [mm] | 500 x 500 x 25 | | | | | | | 58A | [mm] | 600 x 600 x 30 | | | | | ## 3.3.2 Actuator Data Table 12.1 | | Symbol [Unit] | | CHA- | 14A-E | | | |--|--|------|----------------------------------|-------------------|------|--| | Motor feedback system | | | RES / D20- | 48 / M128S | | | | Ratio | i[] | 30 | 50 | 80 | 100 | | | Maximum output torque | T _{max} [Nm] | 9 | 18 | 23 | 28 | | | Maximum output speed | n _{max} [rpm] | 283 | 170 | 106 | 85 | | | Maximum current | I _{max} [A _{rms}] | 7.4 | 8.6 | 6.9 | 6.7 | | | Continuous stall torque | T ₀ [Nm] | 6.8 | 6.9 | 11 | 11 | | | Continuous stall current | I ₀ [A _{rms}] | 5.8 | 3.8 | 3.7 | 3.1 | | | Maximum DC bus voltage | U _{DCmax} [V _{DC}] | | 4 | 8 | | | |
Electrical time constant (20° C) | t _e [ms] | | 0 | .8 | | | | Mechanical time constant (20° C) Version RES | t _m [ms] | | 14 | 1.0 | | | | Mechanical time constant (20° C) Version D2048 | t _m [ms] | | 9 | .0 | | | | Mechanical time constant (20° C) Version M128S | t _m [ms] | 23.0 | | | | | | No load current (+20° C) | I _{NLS} [A _{rms}] | 1.0 | 0.9 | 0.8 | 0.8 | | | No load current (-40° C) | I _{NLS} [A _{rms}] | 3.1 | 3.7 | 4.5 | 5.1 | | | No load running current constant (30° C) | K _{INL} [x10 ⁻³ A _{rms} /rpm] | 4.6 | 7.6 | 12.2 | 15.2 | | | No load running current constant (80° C) | K _{INL} [x10 ⁻³ A _{rms} /rpm] | 1.6 | 2.7 | 4.3 | 5.4 | | | Torque constant (at output) | k _{Tout} [Nm/A _{rms}] | 1.2 | 1.8 | 3.0 | 3.5 | | | Torque constant (at motor) | k _{TM} [Nm/A _{rms}] | | 0. | 04 | | | | AC voltage constant (L-L, 20° C, at motor) | k _{EM} [V _{rms} /1000 rpm] | | : | 3 | | | | Motor terminal voltage (fundamental wave only) | U _M [V _{rms}] | | 18 . | 34 | | | | Demagnetisation current | I _E [A _{rms}] | | | - | | | | Maximum motor speed | n _{max} [rpm] | | 85 | 500 | | | | Rated motor speed | n _N [rpm] | | 35 | 00 | | | | Resistance (L-L, 20°C) | $R_{L-L}[\Omega]$ | | 0. | 42 | | | | Inductance (L-L) | L _{L-L} [mH] | | 0. | 35 | | | | Number of pole pairs | p[] | | | 5 | | | | Weight without brake | m [kg] | | 1.6 (D2048)
1.9 (RES / M128S) | | | | | Weight with brake | m [kg] | | • | 2048)
/ M128S) | | | | Hollow shaft diameter | d _h [mm] | | 1 | 2 | | | Table 13.1 | | Symbol [Unit] | CHA-14A-H/N | | | | | |--|--|----------------------------------|----------------------------------|------------|-----------|--| | Motor feedback system | | | RES / D204 | 18 / M1785 | | | | Ratio |
 | 30 50 80 10 | | | | | | Maximum output torque | T _{max} [Nm] | 9 | 18 | 23 | 28 | | | Maximum output speed | n _{max} [rpm] | 283 | 170 | 106 | 85 | | | Maximum current | I _{max} [A _{rms}] | 1.1 | 1.3 | 1.0 | 1.0 | | | Continuous stall torque | T _n [Nm] | 6.8 | 6.9 | 11 | 11 | | | Continuous stall current | I ₀ [A _{rms}] | 0.9 | 0.6 | 0.6 | 0.5 | | | Maximum DC bus voltage | U _{DCmax} [V _{DC}] | 0.5 | |] | 0.5 | | | Electrical time constant (20° C) | t _p [ms] | | | .9 | | | | Mechanical time constant (20° C) Version RES | t _m [ms] | | | | | | | Mechanical time constant (20° C) Version D2048 | t _m [ms] | 4.4 | | | | | | Mechanical time constant (20° C) Version M128S | t _m [ms] | 7.4 | | | | | | No load current | I _{NLS} [A _{rms}] | 0.13 0.12 0.10 | | | | | | No load running current constant (30° C) | K _{INL} [x10 ⁻³ A _{rms} /rpm] | 0.5 | 0.8 | 1 | 0.10
2 | | | No load running current constant (80° C) | K _{INI} [x10 ⁻³ A _{rms} /rpm] | 0.2 | 0.3 | 0.5 | 0.6 | | | Torque constant (at output) | k _{Tout} [Nm/A _{rms}] | 9.4 | 14.4 | 24.4 | 31.4 | | | Torque constant (at motor) | k _{TM} [Nm/A _{rms}] | | 0.1 | ı | | | | AC voltage constant (L-L, 20° C, at motor) | k _{FM} [V _{rms} /1000 rpm] | | 2 | 2 | | | | Motor terminal voltage (fundamental wave only) | U _M [V _{rms}] | | 220 | 430 | | | | Demagnetisation current | I _F [A _{rms}] | | | - | | | | Maximum motor speed | n _{max} [rpm] | | 85 | 00 | | | | Rated motor speed | n _N [rpm] | | 35 | 00 | | | | Resistance (L-L, 20° C) | R _{L-L} [Ω] | | 7. | .7 | | | | Inductance (L-L) | L _{I-L} [mH] | | 15 | i.0 | | | | Number of pole pairs | p[] | | | 5 | | | | Weight without brake | m [kg] | | 1.6 (D2048)
2.2 (RES / M128S) | | | | | Weight with brake | m [kg] | 1.9 (D2048)
2.5 (RES / M128S) | | | | | | Hollow shaft diameter | d _h [mm] | | 1 | 2 | | | Table 14.1 | | Symbol [Unit] | CHA-14A | | | | | |--|---|---------|-------|-------|-------|--| | Motor feedback system | | | R | ES | | | | Ratio | i[] | 30 | 50 | 80 | 100 | | | Moment of Inertia output side | | | | • | • | | | Moment of inertia without brake | J _{out} [kgm²] | 0.031 | 0.087 | 0.222 | 0.347 | | | Moment of inertia with brake | J _{out} [kgm²] | 0.039 | 0.109 | 0.280 | 0.438 | | | Moment of Inertia at motor | | | ' | ' | | | | Moment of inertia at motor without brake | J [x10 ⁻⁴ kgm ²] | | 0.3 | 347 | | | | Moment of inertia at motor with brake | J [x10 ⁻⁴ kgm ²] | | 0.4 | 138 | | | | Motor feedback system | | | D20 | 048 | | | | Ratio | i[] | 30 | 50 | 80 | 100 | | | Moment of Inertia output side | | • | | | | | | Moment of inertia without brake | J _{out} [kgm²] | 0.020 | 0.056 | 0.142 | 0.223 | | | Moment of inertia with brake | J _{out} [kgm²] | 0.028 | 0.078 | 0.201 | 0.314 | | | Moment of Inertia at motor | | | | | | | | Moment of inertia at motor without brake | J [x10 ⁻⁴ kgm ²] | | 0.2 | 223 | | | | Moment of inertia at motor with brake | J [x10 ⁻⁴ kgm ²] | | 0.3 | 314 | | | | Motor feedback system | | | M1: | 285 | | | | Ratio | i[] | 30 | 50 | 80 | 100 | | | Moment of Inertia output side | | | | | | | | Moment of inertia without brake | J _{out} [kgm²] | 0.052 | 0.145 | 0.371 | 0.580 | | | Moment of inertia with brake | J _{out} [kgm²] | 0.060 | 0.168 | 0.429 | 0.671 | | | Moment of Inertia at motor | · | , | '
 | | | | | Moment of inertia at motor without brake | J [x10 ⁻⁴ kgm ²] | | 0.5 | 580 | | | | Moment of inertia at motor with brake | J [x10 ⁻⁴ kgm²] | | 0.0 | 571 | | | #### Technical Data Brake Table 14.2 | | Symbol (Unit) | CHA-14A | | | | | | |------------------------------------|-------------------------------------|---------|----|----|-----|--|--| | Ratio | i[] | 30 | 50 | 80 | 100 | | | | Brake voltage | U _{Br} [V _{DC}] | 24 ±10% | | | | | | | Brake holding torque (at output) | T _{Br} [Nm] | 9 | 18 | 23 | 28 | | | | Brake current to open | I _{OBr} [A _{DC}] | - | | | | | | | Brake current to hold | I _{HBr} [A _{DC}] | | 0. | 54 | | | | | Number of brake cyles at n = 0 rpm | | | | - | | | | | Emergency brake cyles | | - | | | | | | | Opening time | t _o [ms] | - | | | | | | | Closing time | t _c [ms] | | | - | | | | The performance curves shown below are valid for the specified ambient operating temperature if the motor terminal voltage is higher or equal to the values given in the ratings table. #### Legend Intermittent duty Continuous duty L: U_M = 34 VAC H: U_M = 18 VAC ---- S3-ED 50% (1 min) ———— 15 #### CHA-14A-30-H/N #### CHA-14A-50-H/N Intermittent duty U_M = 220 ... 430 VAC S3-ED 50% (1 min) Continuous duty Table 17.1 | Table 17.1 | | | | | | | | |--|--|----------------------------------|------|---------------|------|------|--| | | Symbol [Unit] | CHA-17A-E | | | | | | | Motor feedback system | | | RE: | S / D2048 / M | 285 | | | | Ratio | i[] | 30 | 50 | 80 | 100 | 120 | | | Maximum output torque | T _{max} [Nm] | 16 | 34 | 43 | 54 | 54 | | | Maximum output speed | n _{max} [rpm] | 220 | 132 | 83 | 66 | 55 | | | Maximum current | I _{max} [A _{rms}] | 8.3 | 10.3 | 8.1 | 8.1 | 6.8 | | | Continuous stall torque | T ₀ [Nm] | 12 | 26 | 27 | 39 | 39 | | | Continuous stall current | I ₀ [A _{rms}] | 6.4 | 8.0 | 5.3 | 6.0 | 5.1 | | | Maximum DC bus voltage | U _{DCmax} [V _{DC}] | | | 48 | | | | | Electrical time constant (20° C) | t _e [ms] | | | 1.3 | | | | | Mechanical time constant (20° C) Version RES | t _m [ms] | | | 10.0 | | | | | Mechanical time constant (20° C) Version D2048 | t _m [ms] | | | 5.0 | | | | | Mechanical time constant (20° C) Version M128S | t _m [ms] | | | 9.0 | | | | | No load current (+20° C) | I _{NLS} [A _{rms}] | 0.8 | 0.7 | 0.6 | 0.6 | 0.6 | | | No load current (-20° C) | I _{NLS} [A _{rms}] | 2.6 | 3.5 | 3.9 | 4.4 | 4.7 | | | No load running current constant (30° C) | K _{INL} [x10 ⁻³ A _{rms} /rpm] | 4.6 | 7.7 | 12.3 | 15.4 | 18.5 | | | No load running current constant (80° C) | K _{INL} [x10 ⁻³ A _{rms} /rpm] | 1.7 | 2.8 | 4.5 | 5.6 | 6.8 | | | Torque constant (at output) | k _{Tout} [Nm/A _{rms}] | 1.9 | 3.3 | 5.1 | 6.5 | 7.6 | | | Torque constant (at motor) | k _{TM} [Nm/A _{rms}] | | | 0.07 | | | | | AC voltage constant (L-L, 20° C, at motor) | k _{EM} [V _{rms} /1000 rpm] | | | 5 | | | | | Motor terminal voltage (fundamental wave only) | U _M [V _{rms}] | | | 18 34 | | | | | Demagnetisation current | $I_{E}[A_{rms}]$ | | | - | | | | | Maximum motor speed | n _{max} [rpm] | | | 6600 | | | | | Rated motor speed | n _N [rpm] | | | 3500 | | | | | Resistance (L-L, 20° C) | R _{L-L} [Ω] | | | 0.32 | | | | | Inductance (L-L) | L _{L-L} [mH] | | | 0.42 | | | | | Number of pole pairs | p[] | | | 5 | | | | | Weight without brake | m [kg] | 2.1 (D2048)
2.8 (RES / M128S) | | | | | | | Weight with brake | m [kg] | 2.5 (D2048)
3.2 (RES / M128S) | | | | | | | Hollow shaft diameter | d _h [mm] | | | 16 | | | | | | | | | | | | | Table 18.1 | Motor feedback system FRATION International Properties Pro | Table 18.1 | | , | | | | | |
--|--|--|------|------|----------------|------|------|--| | Ratio i [] 30 50 80 100 120 Maximum output torque T _{max} [Nm] 16 34 43 54 54 Maximum output speed n _{max} [nm] 243 166 91 73 61 Maximum current I _{max} [A _m] 1.6 2.0 1.6 1.6 1.3 Continuous stall turent I _{max} [A _m] 1.2 2.6 2.7 39 39 Continuous stall current I _{max} [A _m] 1.3 1.6 1.0 1.2 1.0 Maximum DC bus voltage U _{Comax} [V _m] | | Symbol [Unit] | | | CHA-17A-H/N | | | | | Maximum output torque Tmm (Nm) 16 34 43 54 61 Maximum output speed nmm (rpm) 243 146 91 73 61 Maximum current Imm (Rm) 1.6 2.0 1.6 1.6 1.3 Continuous stall torque Tc (Nm) 12 26 27 39 39 Continuous stall torque Tc (Nm) 12 26 27 39 39 Continuous stall torque Tc (Nm) 12 26 27 39 39 Continuous stall torque Tc (Nm) 12 26 27 39 39 Continuous stall torque Tc (Nm) 12 26 27 39 39 39 Continuous stall torque Tc (Nm) 13 16 10 < | Motor feedback system | | | RE: | 5 / D2048 / M1 | 285 | | | | Maximum output speed n _{max} [rpm] 243 146 91 73 61 Maximum current I _{max} [A _{mm}] 1.6 2.0 1.6 1.6 1.3 Continuous stall torque T ₀ [Nm] 12 2.6 27 39 39 Continuous stall torque I ₀ [Nm] 12 2.6 27 39 39 Continuous stall torque I ₀ [Nm] 12 2.6 27 39 39 Continuous stall torque I ₀ [Nm] 1 1.6 1.0 1.2 1.0 Maximum OC bus voltage U ₀ [Nm] 3 1.6 1.0 1.2 1.0 Mechanical time constant (20° C) Version M208 t _m [ms] 2.5 5.0 3.0 1.0 1.0 0.1 0. | Ratio | i[] | 30 | 50 | 80 | 100 | 120 | | | Maximum current Imax [Amm] 1.6 2.0 1.6 1.3 Continuous stall torque T₀ [Nm] 12 26 27 39 39 Continuous stall current I₀ [Amm] 1.3 1.6 1.0 1.2 1.0 Maximum DC bus voltage Uocmac Voc] 5 3 0 <td>Maximum output torque</td> <td>T_{max} [Nm]</td> <td>16</td> <td>34</td> <td>43</td> <td>54</td> <td>54</td> | Maximum output torque | T _{max} [Nm] | 16 | 34 | 43 | 54 | 54 | | | Continuous stall torque T₀ [Nm] 12 26 27 39 39 Continuous stall current I₀ [Ame] 1.3 1.6 1.0 1.2 1.0 Maximum DC bus voltage Uoctomack Voc] 580 580 580 Electrical time constant (20° C) t₂ [ms] 2.5 5.5 Mechanical time constant (20° C) Version D2048 t₃ [ms] 3.0 5.5 Mechanical time constant (20° C) Version D2048 t₃ [ms] 3.0 4.5 Mechanical time constant (20° C) Version M1285 t₃ [ms] 0.13 0.11 0.11 0.10 No load current l₃ [s. [ms] 0.05 0.13 0.11 0.11 0.10 No load running current constant (80° C) Kø, [k10° 4 m.,/rpm] 1 2 3 4 5 No load running current constant (80° C) Kø, [k10° 4 m.,/rpm] 10.9 18.3 30.3 37.5 43.3 Torque constant (at output) kø, [km/Mm/Am.] 10.9 18.3 30.3 37.5 43.3 Motor terminal voltage (fu | Maximum output speed | n _{max} [rpm] | 243 | 146 | 91 | 73 | 61 | | | Continuous stall current I₀ (Amr) (Amr) 1.3 1.6 1.0 1.2 1.0 Maximum DC bus voltage U _{DERMAX} (V _D L) 5680 3680 | Maximum current | I _{max} [A _{rms}] | 1.6 | 2.0 | 1.6 | 1.6 | 1.3 | | | Maximum DC bus voltage U _{DEMMS} (V _{RE}) 680 Electrical time constant (20° C) t _e (Ims) 2.5 Mechanical time constant (20° C) Version RES t _m (Ims) 5.5 Mechanical time constant (20° C) Version D2048 t _m (Ims) 3.0 Mechanical time constant (20° C) Version M1285 t _m (Ims) 4.5 No load current I _{Nus} (A _{mm}) 0.15 0.13 0.11 0.11 0.10 No load running current constant (30° C) K _{Nuc} (x10° A _{mm} /rpm) 1 2 3 4 5 No load running current constant (80° C) K _{Nuc} (x10° A _{mm} /rpm) 0.4 0.6 0.9 1 1 You que constant (at output) k _{Nuc} (x10° A _{mm} /rpm) 0.4 0.6 0.9 1 1 Torque constant (at motor) k _{Nuc} (Nm/A _{mm}) 10.9 18.3 30.3 37.5 43.3 Torque constant (at motor) k _{Nuc} (Nm/A _{mm}) 10.9 18.3 30.3 37.5 43.3 Motor terminal voltage (fundamental wave only) U _M (V _{mm}) 20 | Continuous stall torque | T _o [Nm] | 12 | 26 | 27 | 39 | 39 | | | Electrical time constant (20° C) t, [ms] 2.5 Mechanical time constant (20° C) Version RES t, [ms] 5.5 Mechanical time constant (20° C) Version D2048 t, [ms] 3.0 Mechanical time constant (20° C) Version M128S t, [ms] | Continuous stall current | I ₀ [A _{rms}] | 1.3 | 1.6 | 1.0 | 1.2 | 1.0 | | | Mechanical time constant (20° C) Version D2048 t_m [ms] 5.5 Mechanical time constant (20° C) Version D2048 t_m [ms] 3.0 Mechanical time constant (20° C) Version M128S t_m [ms] 3.0 Mechanical time constant (20° C) Version M128S t_m [ms] 3.0 No load current l_{MS} [Ams] 0.15 0.13 0.11 0.11 0.10 No load running current constant (30° C) K_{MS} [xl0³ Ams/rpm] 1 2 3 4 5 No load running current constant (80° C) K_{MS} [xl0³ Ams/rpm] 0.4 0.6 0.9 1 1 No load running current constant (80° C) K_{MS} [xlm/Ams/rpm] 0.4 0.6 0.9 1 1 No load running current constant (80° C) K_{MS} [xlm/Ams/rpm] 10.9 18.3 30.3 37.5 43.3 Torque constant (at motor) K_{MS} [xlm/Ams/rpm] 10.9 18.3 30.3 37.5 43.3 AC voltage constant (1c-L, 20° C, at motor) K_{MS} [V.m./V.m.] V.m. [V.m.] 220 4.8 Maximum motor speed </td <td>Maximum DC bus voltage</td> <td>U_{DCmax} [V_{DC}]</td> <td></td> <td></td> <td>680</td> <td></td> <td></td> | Maximum DC bus voltage | U _{DCmax} [V _{DC}] | | | 680 | | | | | Mechanical time constant (20° C) Version D2048 t_m [ms] 3.0 Mechanical time constant (20° C) Version M128S t_m [ms] 4.5 No load current l_{NLS} [A _{ms}] 0.15 0.13 0.11 0.11 0.10 No load running current constant (30° C) K_{NR} [X10³ A _{ms} /rpm] 1 2 3 4 5 No load running current constant (80° C) K_{NR} [X10³ A _{ms} /rpm] 0.4 0.6 0.9 1 1 No load running current constant (at output) k_{NR} [Nm/A _{ms}] 10.9 18.3 30.3 37.5 43.3 Torque constant (at motor) k_{IN} [Nm/A _{ms}] 10.9 18.3 30.3 37.5 43.3 AC voltage constant (L-L, 20° C, at motor) k_{EM} [V _{ms} /1000 rpm] 20.37 20.37 AC voltage (fundamental wave only) U_m [V _{ms}] 220 430 43.3 Demagnetisation current I_{EM} [A _{ms}] 7300 20.37 20.37 20.37 20.37 20.37 20.37 20.37 20.37 20.37 20.37 20.37 20.37 | Electrical time constant (20° C) | t _e [ms] | | | 2.5 | | | | | Mechanical time constant (20° C) Version M128S tmms 4.5 No load current Internation of the constant (30° C) 0.15 0.13 0.11 0.11 0.10 No load running current constant (30° C) Kmill (310° Amillym) 1 2 3 4 5 No load running current constant (80° C) Kmill (310° Amillym) 0.4 0.6 0.9 1 1 Torque constant (at output) kmill (100° kmill)m 10.9 18.3 30.3 37.5 43.3 Torque constant (at motor) kmill (100° kmill)m 0.9 1 1 1 Ac voltage constant (at motor) kmill (100° kmill)m 0.37 | Mechanical time constant (20° C) Version RES | t _m [ms] | | | 5.5 | | | | | No load current I _{NLS} [A _{ms}] 0.15 0.13 0.11 0.11 0.10 No load running current constant (30° C) K _{NL} [x10°³ A _{ms} /rpm] 1 2 3 4 5 No load running current constant (80° C) K _{NL} [x10°³ A _{ms} /rpm] 0.4 0.6 0.9 1 1 Torque constant (at output) k _{Tou} [Nm/A _{ms}] 10.9 18.3 30.3 37.5 43.3 Torque constant (at motor) k _{Tou} [Nm/A _{ms}] 0.37 -
- </td <td>Mechanical time constant (20° C) Version D2048</td> <td>t_m [ms]</td> <td></td> <td></td> <td>3.0</td> <td></td> <td></td> | Mechanical time constant (20° C) Version D2048 | t _m [ms] | | | 3.0 | | | | | No load running current constant (30° C) K _{NL} [x10³ A _{ms} /rpm] 1 2 3 4 5 No load running current constant (80° C) K _{NL} [x10³ A _{ms} /rpm] 0.4 0.6 0.9 1 1 Torque constant (at output) k _{Tout} [Nm/A _{ms}] 10.9 18.3 30.3 37.5 43.3 Torque constant (at motor) k _{TM} [Nm/A _{ms}] 0.37 </td <td>Mechanical time constant (20° C) Version M128S</td> <td>t_m [ms]</td> <td></td> <td></td> <td>4.5</td> <td></td> <td></td> | Mechanical time constant (20° C) Version M128S | t _m [ms] | | | 4.5 | | | | | No load running current constant (80° C) K_{INL} [X10° 3 A_{ms} /rpm] 0.4 0.6 0.9 1 1 Torque constant (at output) k_{Tout} [Nm/A _{ms}] 10.9 18.3 30.3 37.5 43.3 Torque constant (at motor) k_{TM} [Nm/A _{ms}] 0.37< | No load current | I _{NLS} [A _{rms}] | 0.15 | 0.13 | 0.11 | 0.11 | 0.10 | | | Torque constant (at output) k_{Tout} [Nm/A _{ms}] 10.9 18.3 30.3 37.5 43.3 Torque constant (at motor) k_{TM} [Nm/A _{ms}] 0.37 AC voltage constant (L-L, 20° C, at motor) k_{EM} [V _{ms} /1000 rpm] 26 Motor terminal voltage (fundamental wave only) U_{M} [V _{ms}] 220 430 Demagnetisation current I_{E} [A _{ms}] - Maximum motor speed n_{max} [rpm] 7300 Rated motor speed n_{N} [rpm] 3500 Resistance (L-L, 20° C) R_{LL} [Ω] 4.8 Inductance (L-L) L_{LL} [mH] 12.0 Number of pole pairs p [] 5 Weight without brake m [kg] $\frac{2.1}{2.5}$ (D2048) $\frac{2.5}{2.5}$ $2.$ | No load running current constant (30° C) | K _{INL} [x10 ⁻³ A _{rms} /rpm] | 1 | 2 | 3 | 4 | 5 | | | Torque constant (at motor) k_{TM} [Nm/A _{ms}] 0.37 AC voltage constant (L-L, 20° C, at motor) k_{EM} [V _{ms} /1000 rpm] 26 Motor terminal voltage (fundamental wave only) U_M [V _{ms}] 220 430 Demagnetisation current I_E [A _{ms}] - Maximum motor speed n_{M} [rpm] 7300 Rated motor speed n_{N} [rpm] 3500 Resistance (L-L, 20° C) R_{LL} [Ω] 4.8 Inductance (L-L) L_{LL} [] L_{LL} [L_{LL} [L_{LL}] L_{LL} [L_{LL} [L_{LL}] | No load running current constant (80° C) | K _{INL} [x10 ⁻³ A _{rms} /rpm] | 0.4 | 0.6 | 0.9 | 1 | 1 | | | AC voltage constant (L-L, 20° C, at motor) k_{EM} [V_{rms} /1000 rpm]26Motor terminal voltage (fundamental wave only) U_{M} [V_{rms}] $220 \dots 430$ Demagnetisation current I_{E} [A_{rms}]-Maximum motor speed n_{max} [rpm] 7300 Rated motor speed n_{N} [rpm] 3500 Resistance (L-L, 20° C) R_{LL} [Ω] 4.8 Inductance (L-L) L_{LL} [mH] 12.0 Number of pole pairs p [] 5 Weight without brake m [kg] $\frac{2.1}{02048}$)
2.8 (RES / M128S)Weight with brake m [kg] $\frac{2.5}{0.2048}$)
3.2 (RES / M128S) | Torque constant (at output) | k _{Tout} [Nm/A _{rms}] | 10.9 | 18.3 | 30.3 | 37.5 | 43.3 | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Torque constant (at motor) | k _{TM} [Nm/A _{rms}] | | | 0.37 | | | | | Demagnetisation current $I_{E}\left[A_{ms}\right] - \\ Maximum motor speed \\ n_{max}\left[rpm\right] & 7300 \\ Rated motor speed \\ n_{N}\left[rpm\right] & 3500 \\ Resistance (L-L, 20° C) & R_{LL}\left[\Omega\right] & 4.8 \\ Inductance (L-L) & L_{LL}\left[mH\right] & 12.0 \\ Number of pole pairs & p\left[\right] & 5 \\ Weight without brake & m\left[kg\right] & \frac{2.1 \left(D2048\right)}{3.2 \left(RES \ / \ M128S\right)} \\ Weight with brake & m\left[kg\right] & \frac{2.5 \left(D2048\right)}{3.2 \left(RES \ / \ M128S\right)} \\ \\$ | AC voltage constant (L-L, 20° C, at motor) | k _{EM} [V _{rms} /1000 rpm] | | | 26 | | | | | Maximum motor speed n_{max} [rpm] 7300 Rated motor speed n_N [rpm] 3500 Resistance (L-L, 20° C) R_{LL} [Ω] 4.8 Inductance (L-L) L_{LL} [mH] 12.0 Number of pole pairs p [] 5 Weight without brake m [kg] $\frac{2.1}{2.8}$ (RES / M128S) Weight with brake m [kg] $\frac{2.5}{3.2}$ (D2048) $\frac{2.5}{1.02048}$ (D2048) $\frac{2.5}{3.2}$ (RES / M128S) | Motor terminal voltage (fundamental wave only) | U _M [V _{rms}] | | | 220 430 | | | | | Rated motor speed n_N [rpm] 3500 Resistance (L-L, 20° C) R_{L_L} [Ω] 4.8 Inductance (L-L) L_{L_L} [mH] 12.0 Number of pole pairs p [] 5 Weight without brake m [kg] $\frac{2.1}{2.8}$ (RES / M128S) Weight with brake m [kg] $\frac{2.5}{3.2}$ (D2048) $\frac{2.5}{1.2020}$ (D2048) $\frac{2.5}{3.2}$ (RES / M128S) | Demagnetisation current | I _E [A _{rms}] | | | - | | | | | Resistance (L-L, 20° C) R _{L-L} [Ω] 4.8 Inductance (L-L) L _{L-L} [mH] 12.0 Number of pole pairs p [] 5 Weight without brake m [kg] 2.1 (D2048)
2.8 (RES / M128S) Weight with brake m [kg] 2.5 (D2048)
3.2 (RES / M128S) | Maximum motor speed | n _{max} [rpm] | | | 7300 | | | | | Inductance (L-L) L_L [mH] 12.0 Number of pole pairs p [] 5 Weight without brake m [kg] 2.1 (D2048) 2.8 (RES / M128S) Weight with brake m [kg] 2.5 (D2048) 3.2 (RES / M128S) | Rated motor speed | n _N [rpm] | | | 3500 | | | | | Number of pole pairs p [] 5 Weight without brake m [kg] 2.1 (D2048)
2.8 (RES / M128S) Weight with brake m [kg] 2.5 (D2048)
3.2 (RES / M128S) | Resistance (L-L, 20° C) | $R_{L-L}[\Omega]$ | | | 4.8 | | | | | Weight without brake m [kg] 2.1 (D2048)
2.8 (RES / M1285) Weight with brake m [kg] 2.5 (D2048)
3.2 (RES / M128S) | Inductance (L-L) | L _{L-L} [mH] | | | 12.0 | | | | | Weight without brake m [kg] 2.8 (RES / M128S) Weight with brake m [kg] 2.5 (D2048) 3.2 (RES / M128S) 3.2 (RES / M128S) | Number of pole pairs | p[] | | | 5 | | | | | weight with brake m [kg] 3.2 (RES / M128S) | Weight without brake | m [kg] | , / | | | | | | | Hollow shaft diameter d _h [mm] 16 | Weight with brake | m [kg] | | | | | | | | | Hollow shaft diameter | d _h [mm] | | | 16 | | | | Table 19.1 | | Symbol [Unit] | | | CHA-17A | | | |--|---|-------|-------|---------|-------|-------| | Motor feedback system | | | | RES | | | | Ratio | i[] | 30 | 50 | 80 | 100 | 120 | | Moment of Inertia output side | | | | | | | | Moment of inertia without brake | J _{out} [kgm²] | 0.095 | 0.264 | 0.676 | 1.056 | 1.520 | | Moment of inertia with brake | J _{out} [kgm²] | 0.104 | 0.289 | 0.741 | 1.158 | 1.667 | | Moment of Inertia at motor | | | | | | | | Moment of inertia at motor without brake | J [x10 ⁻⁴ kgm ²] | | | 1.056 | | | | Moment of inertia at motor with brake | J [x10 ⁻⁴ kgm²] | | | 1.158 | | | | Motor feedback system | | | | D2048 | | | | Ratio | i[] | 30 | 50 | 80 | 100 | 120 | | Moment of Inertia output side | | | | | | | | Moment of inertia without brake | J _{out} [kgm²] | 0.047 | 0.131 | 0.355 | 0.523 | 0.753 | | Moment of inertia with brake | J _{out} [kgm²] | 0.060 | 0.160 | 0.400 | 0.630 | 0.900 | | Moment of Inertia at motor | | | | | | | | Moment of inertia at motor without brake | J [x10 ⁻⁴ kgm ²] | | | 0.523 | | | | Moment of inertia at motor with brake | J [x10 ⁻⁴ kgm ²] | | | 0.625 | | | | Motor feedback system | | | | M1285 | | | | Ratio | i[] | 30 | 50 | 80 | 100 | 120 | | Moment of Inertia output side | | | • | | | | | Moment of inertia without brake | J _{out} [kgm²] | 0.078 | 0.218 | 0.557 | 0.871 | 1.254 | | Moment of inertia with brake | J _{out} [kgm²] | 0.088 | 0.243 | 0.623 | 0.973 | 1.401 | | Moment of Inertia at motor | | | | | | | | Moment of inertia at motor without brake | J [x10 ⁻⁴ kgm²] | | | 0.871 | | | | Moment of inertia at motor with brake | J [x10 ⁻⁴ kgm²] | | | 0.973 | | | ## Technical Data Brake Table 19.2 | | Symbol [Unit] | | | CHA-17A | | | |------------------------------------|-------------------------------------|----|----|---------|-----|-----| | Ratio | i[] | 30 | 50 | 80 | 100 | 120 | | Brake voltage | U _{Br} [V _{DC}] | | | 24 ±10% | | | | Brake holding torque (at output) | T _{Br} [Nm] | 15 | 25 | 40 | 50 | 54 | | Brake current to open | I _{OBr} [A _{DC}] | | | - | | | | Brake current to hold | I _{HBr} [A _{DC}] | | | 0.54 | | | | Number of brake cyles at n = 0 rpm | | | | - | | | | Emergency brake cyles | | | | - | | | | Opening time | t _o [ms] | | | - | | | | Closing time | t _c [ms] | | | - | | | The performance curves shown below are valid for the specified ambient operating temperature if the motor terminal voltage is higher or equal to the values given in the ratings table. #### Legend Intermittent duty Continuous duty S3-ED 50% (1 min) #### Legend Intermittent duty U_M = 220 ... 430 VAC S3-ED 50% (1 min) — Continuous duty Table 22.1 | | Symbol [Unit] | CHA-20A | | | | | | |--|--|---------|------|-------------|-------------|------|------| | Motor feedback system | | | | C1024 / S10 | 124 / M1024 | 1 | | | Ratio | i[] | 30 | 50 | 80 | 100 | 120 | 160 | | Maximum output torque | T _{max} [Nm] | 27 | 56 | 74 | 82 | 87 | 92 | | Maximum output speed | n _{max} [rpm] | 200 | 120 | 75 | 60 | 50 | 38 | | Maximum current | I _{max} [A _{rms}] | 2.9 | 3.8 | 3.1 | 2.8 | 2.5 | 2.1 | | Continuous stall torque | T ₀ [Nm] | 19 | 32 | 47 | 49 | 49 | 49 | | Continuous stall current | I _n [A _{rms}] | 2.1 | 2.1 | 1.9 | 1.6 |
1.4 | 1.0 | | Maximum DC bus voltage | U _{DCmax} [V _{DC}] | | | 68 | 30 | | | | Electrical time constant (20° C) | t¸ [ms] | | | 1. | 4 | | | | Mechanical time constant (20° C) | t _m [ms] | 6.7 | | | | | | | No load current | I _{NLS} [A _{rms}] | 0.19 | 0.17 | 0.14 | 0.14 | 0.13 | 0.13 | | No load running current constant (30° C) | K _{INL} [x10 ⁻³ A _{rms} /rpm] | 2 | 4 | 7 | 8 | 9 | 12 | | No load running current constant (80° C) | K _{INL} [x10 ⁻³ A _{rms} /rpm] | 0.7 | 2 | 2 | 3 | 4 | 5 | | Torque constant (at output) | k _{Tout} [Nm/A _{rms}] | 9.9 | 16.5 | 26.8 | 33.4 | 40.1 | 53.5 | | Torque constant (at motor) | k _{TM} [Nm/A _{rms}] | | | 0. | 36 | | | | AC voltage constant (L-L, 20° C, at motor) | k _{EM} [V _{rms} /1000 rpm] | | | 2 | 3 | | | | Motor terminal voltage (fundamental wave only) | U _M [V _{rms}] | | | 220 . | 430 | | | | Demagnetisation current | I _E [A _{rms}] | | | 7. | 0 | | | | Maximum motor speed | n _{max} [rpm] | | | 60 | 00 | | | | Rated motor speed | n _N [rpm] | | | 35 | 00 | | | | Resistance (L-L, 20° C) | R _{L-L} [Ω] | | | 5 | .9 | | | | Inductance (L-L) | L _{I-L} [mH] | 8.0 | | | | | | | Number of pole pairs | p[] | | 5 | | | | | | Weight without brake | m [kg] | | | 3 | .2 | | | | Weight with brake | m [kg] | | | 3 | .9 | | | | Hollow shaft diameter | d _h [mm] | | | 1 | 8 | | | Table 22.1 | | Symbol [Unit] | CHA-20A | | | | | | | |--|---|---------|------|-------------|------------|------|------|--| | Motor feedback system | | | | C1024 / S10 | 24 / M1024 | | | | | Ratio | i[] | 30 | 50 | 80 | 100 | 120 | 160 | | | Moment of Inertia output side | | | | | | | | | | Moment of inertia without brake | J _{out} [kgm²] | 0.1 | 0.28 | 0.72 | 1.12 | 1.61 | 2.86 | | | Moment of inertia with brake | J _{out} [kgm²] | 0.13 | 0.35 | 0.89 | 1.39 | 2.00 | 3.50 | | | Moment of Inertia at motor | | | | | | | | | | Moment of inertia at motor without brake | J [x10 ⁻⁴ kgm²] | 1.12 | | | | | | | | Moment of inertia at motor with brake | J [x10 ⁻⁴ kgm ²] | | | 1.3 | 39 | | | | #### Technical Data Brake Table 22.2 | | Symbol [Unit] | CHA-20A | | | | | | | |------------------------------------|-------------------------------------|---------|----|------|------|-----|-----|--| | Ratio | i [] | 30 | 50 | 80 | 100 | 120 | 160 | | | Brake voltage | U _{Br} [V _{DC}] | | | 24 ± | 10% | | | | | Brake holding torque (at output) | T _{Br} [Nm] | 27 | 45 | 72 | 82 | 87 | 92 | | | Brake current to open | I _{OBr} [A _{DC}] | | | 0 | .6 | | | | | Brake current to hold (10V) | I _{HBr} [A _{DC}] | | | 0 | .3 | | | | | Number of brake cyles at n = 0 rpm | | | | 1000 | 0000 | | | | | Emergency brake cyles | | 200 | | | | | | | | Opening time | t _o [ms] | 110 | | | | | | | | Closing time | t _c [ms] | | | 7 | 0 | | | | The performance curves shown below are valid for the specified ambient operating temperature if the motor terminal voltage is higher or equal to the values given in the ratings table. #### Legend Intermittent duty $U_{\rm M}$ = 220 ... 430 VAC \sim S3-ED 50% (1 min) \sim Continuous duty Table 24.1 | | | 1 | | | | | | |--|--|---------|------|-----------------|------------|------|------| | | Symbol [Unit] | CHA-25A | | | | | | | Motor feedback system | | | |
C1024 / S10 | 24 / M1024 | | | | Ratio | i [] | 30 | 50 | 80 | 100 | 120 | 160 | | Maximum output torque | T _{max} [Nm] | 50 | 98 | 137 | 157 | 167 | 176 | | Maximum output speed | n _{max} [rpm] | 187 | 112 | 70 | 56 | 47 | 35 | | Maximum current | $I_{max}[A_{rms}]$ | 3.5 | 4.0 | 3.4 | 3.2 | 2.8 | 2.2 | | Continuous stall torque | T _n [Nm] | 38 | 55 | 87 | 108 | 108 | 108 | | Continuous stall current | $I_0[A_{rms}]$ | 2.7 | 2.3 | 2.2 | 2.2 | 1.9 | 1.4 | | Maximum DC bus voltage | $U_{DCmax}\left[V_{DC}\right]$ | | | 68 | 30 | | | | Electrical time constant (20° C) | t _e [ms] | | | 1. | 6 | | | | Mechanical time constant (20° C) | t _m [ms] | | | 5. | .9 | | | | No load current | $I_{NLS}[A_{rms}]$ | 0.21 | 0.19 | 0.15 | 0.15 | 0.15 | 0.14 | | No load running current constant (30° C) | K_{INL} [x10 ⁻³ A_{rms} /rpm] | 4 | 6 | 10 | 12 | 14 | 19 | | No load running current constant (80° C) | K_{INL} [x10 ⁻³ A_{rms} /rpm] | 1 | 2 | 3 | 4 | 5 | 7 | | Torque constant (at output) | k _{Tout} [Nm/A _{rms}] | 15.5 | 26.0 | 42.5 | 53.1 | 63.9 | 85.0 | | Torque constant (at motor) | $k_{TM} [Nm/A_{rms}]$ | | | 0.5 | 55 | | | | AC voltage constant (L-L, 20° C, at motor) | k _{EM} [V _{rms} /1000 rpm] | | | 3 | 7 | | | | Motor terminal voltage (fundamental wave only) | $U_{M}[V_{rms}]$ | | | 220 | 430 | | | | Demagnetisation current | I _E [A _{rms}] | | | 1. | 5 | | | | Maximum motor speed | n _{max} [rpm] | | | 56 | 00 | | | | Rated motor speed | n _N [rpm] | | | 35 | 00 | | | | Resistance (L-L, 20° C) | $R_{L-L}\left[\Omega ight]$ | | | 3. | .7 | | | | Inductance (L-L) | L _{L-L} [mH] | 6.0 | | | | | | | Number of pole pairs | p[] | 6 | | | | | | | Weight without brake | m [kg] | 4.9 | | | | | | | Weight with brake | m [kg] | | | 6 | .1 | | | | Hollow shaft diameter | d _ի [mm] | | | 2 | 7 | | | Table 24.1 | | Symbol [Unit] | CHA-25A | | | | | | | |--|---|---------|------|-------------|------------|-----|-----|--| | Motor feedback system | | | | C1024 / S10 | 24 / M1024 | | | | | Ratio | i[] | 30 | 50 | 80 | 100 | 120 | 160 | | | Moment of Inertia output side | | | | | | | | | | Moment of inertia without brake | J _{out} [kgm²] | 0.29 | 0.80 | 2.0 | 3.2 | 4.6 | 8.1 | | | Moment of inertia with brake | J _{out} [kgm²] | 0.35 | 0.97 | 2.5 | 3.9 | 5.6 | 9.9 | | | Moment of Inertia at motor | | | | | | | | | | Moment of inertia at motor without brake | J [x10 ⁻⁴ kgm ²] | 3.2 | | | | | | | | Moment of inertia at motor with brake | J [x10 ⁻⁴ kgm ²] | | | 3. | .9 | | | | #### Technical Data Brake Table 24.2 | | Symbol [Unit] | CHA-25A | | | | | | | |------------------------------------|-------------------------------------|---------|----|------|------|-----|-----|--| | Ratio | i [] | 30 | 50 | 80 | 100 | 120 | 160 | | | Brake voltage | U _{Br} [V _{DC}] | | | 24 ± | :10% | | | | | Brake holding torque (at output) | T _{Br} [Nm] | 54 | 90 | 137 | 157 | 167 | 176 | | | Brake current to open | I _{OBr} [A _{DC}] | | | 0 | .9 | | | | | Brake current to hold (10V) | I _{HBr} [A _{DC}] | | | 0 | .4 | | | | | Number of brake cyles at n = 0 rpm | | | | 1000 | 0000 | | | | | Emergency brake cyles | | | | 2 | 00 | | | | | Opening time | t _n [ms] | 110 | | | | | | | | Closing time | t _c [ms] | | | 7 | '0 | | | | The performance curves shown below are valid for the specified ambient operating temperature if the motor terminal voltage is higher or equal to the values given in the ratings table. #### Legend Intermittent duty $U_M = 430 \text{ VAC}$ S3-ED 50% (1 min) $U_M = 220 \text{ VAC}$ Table 26.1 | | Symbol [Unit] | | | СНА | -32A | | | |--|--|------|------|-------------|-------------|------|------| | Motor feedback system | | | | C1024 / S10 |)24 / M1024 | ļ | | | Ratio | i[] | 30 | 50 | 80 | 100 | 120 | 160 | | Maximum output torque | T _{max} [Nm] | 100 | 216 | 304 | 333 | 353 | 372 | | Maximum output speed | n _{max} [rpm] | 160 | 96 | 60 | 48 | 40 | 30 | | Maximum current | I _{max} [A _{rms}] | 7.1 | 9.8 | 8.3 | 7.2 | 6.3 | 5.3 | | Continuous stall torque | T _n [Nm] | 44 | 71 | 119 | 154 | 179 | 216 | | Continuous stall current | I _n [A _{rms}] | 3.2 | 3.2 | 3.2 | 3.2 | 3.2 | 2.9 | | Maximum DC bus voltage | U _{DCmax} [V _{DC}] | | | 68 | 30 | | | | Electrical time constant (20° C) | t, [ms] | | | 1. | .6 | | | | Mechanical time constant (20° C) | t _m [ms] | | | 7 | '.1 | | | | No load current | I _{NLS} [A _{rms}] | 0.30 | 0.30 | 0.20 | 0.20 | 0.20 | 0.18 | | No load running current constant (30° C) | K _{INL} [x10 ⁻³ A _{rms} /rpm] | 6 | 10 | 17 | 21 | 25 | 34 | | No load running current constant (80° C) | K _{INL} [x10 ⁻³ A _{rms} /rpm] | 2 | 3 | 6 | 7 | 8 | 11 | | Torque constant (at output) | k _{Tout} [Nm/A _{rms}] | 15.5 | 25.9 | 42.1 | 52.5 | 63.0 | 84.5 | | Torque constant (at motor) | k _{TM} [Nm/A _{rms}] | | | 0. | 55 | | | | AC voltage constant (L-L, 20° C, at motor) | k _{EM} [V _{rms} /1000 rpm] | | | 3 | 17 | | | | Motor terminal voltage (fundamental wave only) | U _M [V _{rms}] | | | 220 . | 430 | | | | Demagnetisation current | I _E [A _{rms}] | | | 1 | 5 | | | | Maximum motor speed | n _{max} [rpm] | | | 48 | 00 | | | | Rated motor speed | n _N [rpm] | | | 35 | 00 | | | | Resistance (L-L, 20° C) | $R_{L-L}[\Omega]$ | | | 3 | .7 | | | | Inductance (L-L) | L _{L-L} [mH] | 6.0 | | | | | | | Number of pole pairs | p[] | 6 | | | | | | | Weight without brake | m [kg] | 6.6 | | | | | | | Weight with brake | m [kg] | | | 7. | .8 | | | | Hollow shaft diameter | d _h [mm] | | | 3 | 2 | | | Table 26.2 | | Symbol [Unit] | CHA-32A | | | | | | | | |--|---|---------|------|-------------|------------|-----|------|--|--| | Motor feedback system | | | | C1024 / S10 | 24 / M1024 | | | | | | Ratio | i[] | 30 | 50 | 80 | 100 | 120 | 160 | | | | Moment of Inertia output side | | | | | | | | | | | Moment of inertia without brake | J _{out} [kgm²] | 0.44 | 1.22 | 3.1 | 4.9 | 7.1 | 12.5 | | | | Moment of inertia with brake | J _{out} [kgm²] | 0.53 | 1.47 | 3.8 | 5.9 | 8.5 | 15.0 | | | | Moment of Inertia at motor | | | | | | | | | | | Moment of inertia at motor without brake | J [x10 ⁻⁴ kgm ²] | 4.9 | | | | | | | | | Moment of inertia at motor with brake | J [x10 ⁻⁴ kgm ²] | | | 5. | .9 | | | | | #### Technical Data Brake Table 26.3 | | Symbol [Unit] | CHA-32A | | | | | | | |
------------------------------------|-------------------------------------|---------|----|------|------|-----|-----|--|--| | Ratio | i [] | 30 | 50 | 80 | 100 | 120 | 160 | | | | Brake voltage | U _{Br} [V _{DC}] | | | 24 ± | :10% | | | | | | Brake holding torque (at output) | T _{Br} [Nm] | 54 | 90 | 144 | 180 | 216 | 288 | | | | Brake current to open | I _{OBr} [A _{DC}] | | | 0 | .9 | | | | | | Brake current to hold (10V) | I _{HBr} [A _{DC}] | | | 0 | .4 | | | | | | Number of brake cyles at n = 0 rpm | | | | 1000 | 0000 | | | | | | Emergency brake cyles | | 200 | | | | | | | | | Opening time | t _o [ms] | 110 | | | | | | | | | Closing time | t _c [ms] | 70 | | | | | | | | The performance curves shown below are valid for the specified ambient operating temperature if the motor terminal voltage is higher or equal to the values given in the ratings table. #### Legend Intermittent duty $U_{\rm M}$ = 430 VAC - S3-ED 50% (1 min) $U_{\rm M}$ = 220 VAC - ----- Table 28.1 | | | I | | | | | | | |--|--|------|------|---------------|-------|------|--|--| | | Symbol [Unit] | | | CHA-40A | | | | | | Motor feedback system | | | C102 | 4 / S1024 / M | 11024 | | | | | Ratio | i[] | 50 | 80 | 100 | 120 | 160 | | | | Maximum output torque | T _{max} [Nm] | 402 | 519 | 568 | 617 | 647 | | | | Maximum output speed | n _{max} [rpm] | 80 | 50 | 40 | 33 | 25 | | | | Maximum current | I _{max} [A _{rms}] | 11.8 | 9.2 | 8.1 | 7.3 | 5.9 | | | | Continuous stall torque | T _o [Nm] | 125 | 208 | 260 | 314 | 420 | | | | Continuous stall current | $I_0[A_{rms}]$ | 3.6 | 3.6 | 3.6 | 3.6 | 3.6 | | | | Maximum DC bus voltage | U _{DCmax} [V _{DC}] | | | 680 | | | | | | Electrical time constant (20° C) | t _e [ms] | | | 2.1 | | | | | | Mechanical time constant (20° C) | t _m [ms] | | | 6.8 | | | | | | No load current | I _{NLS} [A _{rms}] | 0.30 | 0.20 | 0.20 | 0.20 | 0.20 | | | | No load running current constant (30° C) | K _{INL} [x10 ⁻³ A _{rms} /rpm] | 13 | 20 | 25 | 30 | 40 | | | | No load running current constant (80° C) | K _{INL} [x10 ⁻³ A _{rms} /rpm] | 4 | 6 | 8 | 10 | 13 | | | | Torque constant (at output) | k _{Tout} [Nm/A _{rms}] | 38 | 62 | 77 | 92 | 123 | | | | Torque constant (at motor) | k _{TM} [Nm/A _{rms}] | | | 0.83 | | | | | | AC voltage constant (L-L, 20° C, at motor) | k _{EM} [V _{rms} /1000 rpm] | | | 53 | | | | | | Motor terminal voltage (fundamental wave only) | U _M [V _{rms}] | | | 220 430 | | | | | | Demagnetisation current | I _E [A _{rms}] | | | 18 | | | | | | Maximum motor speed | n _{max} [rpm] | | | 4000 | | | | | | Rated motor speed | n _N [rpm] | | | 3000 | | | | | | Resistance (L-L, 20°C) | R _{I-I} [Ω] | | | 2.9 | | | | | | Inductance (L-L) | L _{L-L} [mH] | 6.0 | | | | | | | | Number of pole pairs | p[] | 6 | | | | | | | | Weight without brake | m [kg] | 11.7 | | | | | | | | Weight with brake | m [kg] | | | 13.8 | | | | | | Hollow shaft diameter | d _h [mm] | | | 39 | | | | | Table 28.2 | | Symbol [Unit] | CHA-40A | | | | | | | | |--|---|-----------------------|------|------|------|------|--|--|--| | Motor feedback system | | C1024 / S1024 / M1024 | | | | | | | | | Ratio | i[] | 50 | 80 | 100 | 120 | 160 | | | | | Moment of Inertia output side | | | | | | | | | | | Moment of inertia without brake | J _{out} [kgm²] | 3.10 | 7.90 | 12.3 | 17.7 | 31.4 | | | | | Moment of inertia with brake | J _{out} [kgm²] | 3.60 | 9.10 | 14.2 | 20.4 | 36.3 | | | | | Moment of Inertia at motor | | | | | | | | | | | Moment of inertia at motor without brake | J [x10 ⁻⁴ kgm ²] | | | 12.3 | • | | | | | | Moment of inertia at motor with brake | J [x10 ⁻⁴ kgm²] | | | 14.2 | | | | | | ## Technical Data Brake Table 28.3 | | Symbol [Unit] | CHA-40A | | | | | | | |------------------------------------|-------------------------------------|---------|-----|----------|-----|-----|--|--| | Ratio | i[] | 50 | 80 | 100 | 120 | 160 | | | | Brake voltage | U _{Br} [V _{DC}] | 24 ±10% | | | | | | | | Brake holding torque (at output) | T _{Br} [Nm] | 225 | 360 | 450 | 540 | 647 | | | | Brake current to open | I _{OBr} [A _{DC}] | | | 0.7 | | | | | | Brake current to hold (10V) | I _{HBr} [A _{DC}] | | | 0.3 | | | | | | Number of brake cyles at n = 0 rpm | | | | 10000000 | | | | | | Emergency brake cyles | | 200 | | | | | | | | Opening time | t _o [ms] | 110 | | | | | | | | Closing time | t _c [ms] | | | 70 | | | | | The performance curves shown below are valid for the specified ambient operating temperature if the motor terminal voltage is higher or equal to the values given in the ratings table. #### Legend Intermittent duty Continuous duty S3-ED 50% (1 min) Table 30.1 | | Symbol [Unit] | | | CHA-50A | | | | |--|---|------|------|----------------|-------|------|--| | Motor feedback system | | | C102 | 24 / S1024 / M | 11024 | | | | Ratio | i[] | 50 | 80 | 100 | 120 | 160 | | | Maximum output torque | T _{max} [Nm] | 715 | 941 | 980 | 1080 | 1180 | | | Maximum output speed | n _{max} [rpm] | 70 | 44 | 35 | 30 | 22 | | | Maximum current | I _{max} [A _{rms}] | 10.2 | 8.3 | 6.9 | 6.4 | 5.3 | | | Continuous stall torque | T _o [Nm] | 194 | 363 | 456 | 550 | 736 | | | Continuous stall current | $I_0[A_{rms}]$ | 2.9 | 3.2 | 3.2 | 3.2 | 3.1 | | | Maximum DC bus voltage | $U_{DCmax}[V_{DC}]$ | | | 680 | | | | | Electrical time constant (20° C) | t _e [ms] | | | 3.4 | | | | | Mechanical time constant (20° C) | t _m [ms] | | | 4.7 | | | | | No load current | I _{NLS} [A _{rms}] | 0.30 | 0.20 | 0.20 | 0.17 | 0.16 | | | No load running current constant (30° C) | K_{INL} [x10 ⁻³ A _{rms} /rpm] | 12 | 20 | 25 | 29 | 39 | | | No load running current constant (80° C) | K_{INL} [x10 ⁻³ A_{rms} /rpm] | 4 | 6 | 8 | 9 | 12 | | | Torque constant (at output) | k _{Tout} [Nm/A _{rms}] | 74 | 121 | 145 | 181 | 242 | | | Torque constant (at motor) | k _{TM} [Nm/A _{rms}] | | | 1.60 | | | | | AC voltage constant (L-L, 20° C, at motor) | k _{EM} [V _{rms} /1000 rpm] | | | 104 | | | | | Motor terminal voltage (fundamental wave only) | U _M [V _{rms}] | | | 220 430 | | | | | Demagnetisation current | I _E [A _{rms}] | | | 18 | | | | | Maximum motor speed | n _{max} [rpm] | | | 3500 | | | | | Rated motor speed | n _N [rpm] | | | 2500 | | | | | Resistance (L-L, 20° C) | $R_{L-L}\left[\Omega ight]$ | 3.5 | | | | | | | Inductance (L-L) | L _{L-L} [mH] | 12 | | | | | | | Number of pole pairs | p[] | 6 | | | | | | | Weight without brake | m [kg] | 19.9 | | | | | | | Weight with brake | m [kg] | | | 23.5 | | | | | Hollow shaft diameter | d _h [mm] | | | 45 | | | | Table 30.2 | | Symbol [Unit] | CHA-50A | | | | | | | | |--|----------------------------|-----------------------|-------|------|------|------|--|--|--| | Motor feedback system | | C1024 / S1024 / M1024 | | | | | | | | | Ratio | i[] | 50 | 80 | 100 | 120 | 160 | | | | | Moment of Inertia output side | | | | | | • | | | | | Moment of inertia without brake | J _{out} [kgm²] | 6.62 | 16.90 | 26.5 | 38.1 | 67.8 | | | | | Moment of inertia with brake | J _{out} [kgm²] | 7.30 | 18.70 | 29.2 | 42.0 | 74.7 | | | | | Moment of Inertia at motor | | | | | | , | | | | | Moment of inertia at motor without brake | J [x10 ⁻⁴ kgm²] | | | 26.5 | | | | | | | Moment of inertia at motor with brake | J [x10 ⁻⁴ kgm²] | | | 29.2 | | | | | | ## Technical Data Brake Table 30.3 | | Symbol [Unit] | CHA-50A | | | | | | | | |------------------------------------|-------------------------------------|---------|-----|----------|-----|-----|--|--|--| | Ratio | i[] | 50 | 80 | 100 | 120 | 160 | | | | | Brake voltage | U _{Br} [V _{DC}] | | | 24 ±10% | | | | | | | Brake holding torque (at output) | T _{Br} [Nm] | 225 | 360 | 450 | 540 | 720 | | | | | Brake current to open | I _{OBr} [A _{DC}] | | | 0.7 | | | | | | | Brake current to hold (10V) | I _{HBr} [A _{DC}] | | | 0.3 | | | | | | | Number of brake cyles at n = 0 rpm | | | | 10000000 | | | | | | | Emergency brake cyles | | | | 200 | | | | | | | Opening time | t _o [ms] | 110 | | | | | | | | | Closing time | t _c [ms] | | | 70 | | | | | | The performance curves shown below are valid for the specified ambient operating temperature if the motor terminal voltage is higher or equal to the values given in the ratings table. #### Legend Intermittent duty Continuous duty U_M = 430 VAC ------------- S3-ED 50% (1 min) ———— Table 32.1 | | Symbol [Unit] | CHA-58A | | | | | | |--|--|---------|------|----------------|-------|------|--| | | Symbol [Sint] | | | | | | | | Motor feedback system | | | C102 | 24 / S1024 / M | 11024 | | | | Ratio | i[] | 50 | 80 | 100 | 120 | 160 | | | Maximum output torque | T _{max} [Nm] | 1020 | 1480 | 1590 | 1720 | 1840 | | | Maximum output speed | n _{max} [rpm] | 60 | 38 | 30 | 25 | 19 | | | Maximum current | I _{max} [A _{rms}] | 14.4 | 12.8 | 11.1 | 10.0 | 8.1 | | | Continuous stall torque | T _o [Nm] | 280 | 532 | 670 | 805 | 1080 | | | Continuous stall current | I ₀ [A _{rms}] | 4.2 | 4.6 | 4.6 | 4.6 | 4.6 | | | Maximum DC bus voltage | $U_{DCmax}[V_{DC}]$ | | | 680 | | | | | Electrical time constant (20° C) | t _e [ms] | | | 3.5 | | | | | Mechanical time constant (20° C) | t _m [ms] | | | 5.4 | | | | | No load current | I _{NLS} [A _{rms}] | 0.40 | 0.28 | 0.26 | 0.25 | 0.23 | | | No load running current constant (30° C) | K _{INL} [x10 ⁻³ A _{rms} /rpm] | 19 | 30 | 38 | 46 | 61 | | | No load running current constant (80° C) | K _{INL} [x10 ⁻³ A _{rms} /rpm] | 6 | 10 | 12 | 15 | 19 | | | Torque constant (at output) | k _{Tout} [Nm/A _{rms}] | 75 | 122 | 152 | 183 | 244 | | | Torque constant (at motor) | k _{TM} [Nm/A _{rms}
] | | | 1.70 | | | | | AC voltage constant (L-L, 20° C, at motor) | k _{EM} [V _{rms} /1000 rpm] | | | 105 | | | | | Motor terminal voltage (fundamental wave only) | U _M [V _{rms}] | | | 220 430 | | | | | Demagnetisation current | I _E [A _{rms}] | | | 25 | | | | | Maximum motor speed | n _{max} [rpm] | | | 3000 | | | | | Rated motor speed | n _N [rpm] | | | 2000 | | | | | Resistance (L-L, 20° C) | R _{L-L} [Ω] | | | 2.4 | | | | | Inductance (L-L) | L _{I-I} [mH] | 9 | | | | | | | Number of pole pairs | p[] | 6 | | | | | | | Weight without brake | m [kg] | 27.2 | | | | | | | Weight with brake | m [kg] | | | 31 | | | | | Hollow shaft diameter | d _h [mm] | | | 45 | | | | Table 32.2 | | Symbol [Unit] | CHA-58A | | | | | | | | |--|---|-----------------------|------|------|------|-----|--|--|--| | Motor feedback system | | C1024 / S1024 / M1024 | | | | | | | | | Ratio | i[] | 50 | 80 | 100 | 120 | 160 | | | | | Moment of Inertia output side | | | | | | • | | | | | Moment of inertia without brake | J _{nut} [kgm²] | 11.6 | 29.8 | 46.6 | 67.1 | 119 | | | | | Moment of inertia with brake | J _{nut} [kgm²] | 11.8 | 30.3 | 47.3 | 68.1 | 121 | | | | | Moment of Inertia at motor | | I | | | | l | | | | | Moment of inertia at motor without brake | J [x10 ⁻⁴ kgm ²] | | | 46.6 | | | | | | | Moment of inertia at motor with brake | J [x10 ⁻⁴ kgm²] | | | 47.3 | | | | | | #### Technical Data Brake Table 32.3 | | Symbol [Unit] | | | CHA-58A | | | |------------------------------------|-------------------------------------|-----|-----|----------|------|------| | Ratio | i[] | 50 | 80 | 100 | 120 | 160 | | Brake voltage | U _{Br} [V _{DC}] | | | 24 ±10% | | | | Brake holding torque (at output) | T _{Br} [Nm] | 450 | 720 | 900 | 1080 | 1440 | | Brake current to open | I _{OBr} [A _{DC}] | | | 0.7 | | | | Brake current to hold (10V) | I _{HBr} [A _{DC}] | | | 0.5 | | | | Number of brake cyles at n = 0 rpm | | | | 10000000 | | | | Emergency brake cyles | | | | 200 | | | | Opening time | t _o [ms] | | | 110 | | | | Closing time | t _c [ms] | | | 70 | | | The performance curves shown below are valid for the specified ambient operating temperature if the motor terminal voltage is higher or equal to the values given in the ratings table. #### Legend Intermittent duty Continuous duty S3-ED 50% (1 min) Table 34.1 | | Symbol [Unit] | CHA-20A | | | | | | | |--|--|---------|------|-------|--|------|------|--| | Motor feedback system | | | | M5 | 12P | | | | | Ratio | i[] | 30 | 50 | 80 | 100 | 120 | 160 | | | Maximum output torque | T _{max} [Nm] | 27 | 56 | 74 | 82 | 87 | 92 | | | Maximum output speed | n _{max} [rpm] | 200 | 120 | 75 | 60 | 50 | 38 | | | Maximum current | I _{max} [A _{rms}] | 2.9 | 3.8 | 3.1 | 2.8 | 2.5 | 2.1 | | | Continuous stall torque | T _n [Nm] | 19 | 32 | 47 | 49 | 49 | 49 | | | Continuous stall current | $I_0[A_{rms}]$ | 2.1 | 2.1 | 1.9 | 1.6 | 1.4 | 1.0 | | | Maximum DC bus voltage | $U_{DCmax}[V_{DC}]$ | | | 68 | 30 | | | | | Electrical time constant (20° C) | t [ms] | | | 1. | .4 | | | | | Mechanical time constant (20° C) | t _m [ms] | 6.7 | | | | | | | | No load current | I _{NLS} [A _{rms}] | 0.19 | 0.17 | 0.14 | 0.14 | 0.13 | 0.13 | | | No load running current constant (30° C) | K _{INL} [x10 ⁻³ A _{rms} /rpm] | 2 | 4 | 7 | 8 | 9 | 12 | | | No load running current constant (80° C) | K_{INL} [x10 ⁻³ A _{rms} /rpm] | 0.7 | 2 | 2 | 3 | 4 | 5 | | | Torque constant (at output) | k _{Tout} [Nm/A _{rms}] | 9.9 | 16.5 | 26.8 | 33.4 | 40.1 | 53.5 | | | Torque constant (at motor) | k _{TM} [Nm/A _{rms}] | | | 0. | 0.14 0.14 0.13 7 8 9 2 3 4 | | | | | AC voltage constant (L-L, 20° C, at motor) | k _{EM} [V _{rms} /1000 rpm] | | | 2 | :3 | | | | | Motor terminal voltage (fundamental wave only) | U _M [V _{rms}] | | | 220 . | 430 | | | | | Demagnetisation current | I _E [A _{rms}] | | | 7. | .0 | | | | | Maximum motor speed | n _{max} [rpm] | | | 60 | 00 | | | | | Rated motor speed | n _N [rpm] | | | 35 | 00 | | | | | Resistance (L-L, 20° C) | R _{L-L} [Ω] | 5.9 | | | | | | | | Inductance (L-L) | L _{L-L} [mH] | 8.0 | | | | | | | | Number of pole pairs | p[] | | | | 5 | | | | | Weight without brake | m [kg] | | | 4 | .2 | | | | | Weight with brake | m [kg] | | | 4 | .9 | | | | | Hollow shaft diameter | d _h [mm] | | | 1 | 8 | | | | Table 34.2 | | Symbol [Unit] | CHA-20A | | | | | | | | |--|---|---------|------|------|------|------|------|--|--| | Motor feedback system | | M512P | | | | | | | | | Ratio | i[] | 30 | 50 | 80 | 100 | 120 | 160 | | | | Moment of Inertia output side | | • | • | | | • | | | | | Moment of inertia without brake | J _{out} [kgm²] | 0.21 | 0.58 | 1.48 | 2.32 | 3.30 | 5.90 | | | | Moment of inertia with brake | J _{out} [kgm²] | 0.23 | 0.65 | 1.65 | 2.60 | 3.70 | 6.60 | | | | Moment of Inertia at motor | | , | | | | , | | | | | Moment of inertia at motor without brake | J [x10 ⁻⁴ kgm ²] | 2.32 | | | | | | | | | Moment of inertia at motor with brake | J [x10 ⁻⁴ kgm ²] | | | 2. | 50 | | | | | #### Technical Data Brake Table 34.3 | | Symbol [Unit] | | | СНА | -20A | | | | | |------------------------------------|-------------------------------------|---------|----|------|------|-----|-----|--|--| | Ratio | i [] | 30 | 50 | 80 | 100 | 120 | 160 | | | | Brake voltage | U _{Br} [V _{DC}] | 24 ±10% | | | | | | | | | Brake holding torque (at output) | T _{Br} [Nm] | 27 | 45 | 72 | 82 | 87 | 92 | | | | Brake current to open | I _{OBr} [A _{DC}] | | | 0 | .6 | | | | | | Brake current to hold (10V) | I _{HBr} [A _{DC}] | | | C | .3 | | | | | | Number of brake cyles at n = 0 rpm | | | | 1000 | 0000 | | | | | | Emergency brake cyles | | 200 | | | | | | | | | Opening time | t _n [ms] | 110 | | | | | | | | | Closing time | t _c [ms] | | | 7 | '0 | | | | | The performance curves shown below are valid for the specified ambient operating temperature if the motor terminal voltage is higher or equal to the values given in the ratings table. #### Legend Intermittent duty $U_{\rm M}$ = 220 ... 430 VAC - S3-ED 50% (1 min) - Continuous duty Table 36.1 | | | 1 | | | | | | | |--|--|--|---|------|------|------|------|--| | | Symbol [Unit] | | | СНА | -25A | | | | | Motor feedback system | | | | M5 | 12P | | | | | Ratio | i[] | 30 | 50 | 80 | 100 | 120 | 160 | | | Maximum output torque | T _{max} [Nm] | 50 | 98 | 137 | 157 | 167 | 176 | | | Maximum output speed | n _{max} [rpm] | 187 | 112 | 70 | 56 | 47 | 35 | | | Maximum current | I _{max} [A _{rms}] | 3.5 | 4.0 | 3.4 | 3.2 | 2.8 | 2.2 | | | Continuous stall torque | T _n [Nm] | 38 | 55 | 87 | 108 | 108 | 108 | | | Continuous stall current | I _o [A _{rms}] | 2.7 | 2.3 | 2.2 | 2.2 | 1.9 | 1.4 | | | Maximum DC bus voltage | U _{DCmax} [V _{DC}] | 680 | | | | | | | | Electrical time constant (20° C) | t¸ [ms] | | | 1. | 6 | | | | | Mechanical time constant (20° C) | t _m [ms] | 5.9 | | | | | | | | No load current | I _{NLS} [A _{rms}] | 0.21 | 0.19 | 0.15 | 0.15 | 0.15 | 0.14 | | | No load running current constant (30° C) | K _{INL} [x10 ⁻³ A _{rms} /rpm] | 4 | 6 | 10 | 12 | 14 | 19 | | | No load running current constant (80° C) | K_{INL} [x10 ⁻³ A_{rms} /rpm] | 1 | 2 | 3 | 4 | 5 | 7 | | | Torque constant (at output) | k _{Tout} [Nm/A _{rms}] | 15.5 | 26.0 | 42.5 | 53.1 | 63.9 | 85.0 | | | Torque constant (at motor) | k _{TM} [Nm/A _{rms}] | | | 0. | 70 | | | | | AC voltage constant (L-L, 20° C, at motor) | k _{EM} [V _{rms} /1000 rpm] | | 55 87 108 108 1 2.3 2.2 2.2 1.9 680 1.6 5.9 0.19 0.15 0.15 0.15 0.15 6 10 12 14 2 3 4 5 26.0 42.5 53.1 63.9 8 0.55 37 220 430 15 5600 3500 3.7 | | | | | | | Motor terminal voltage (fundamental wave only) | U _M [V _{rms}] | 1 2 3 4 5 7
15.5 26.0 42.5 53.1 63.9 85
0.55 | | | | | | | | Demagnetisation current | I _E [A _{rms}] | | | 1 | 5 | | | | | Maximum motor speed | n _{max} [rpm] | | | 56 | 00 | | | | | Rated motor speed | n _N [rpm] | | | 35 | 00 | | | | | Resistance (L-L, 20° C) | $R_{L-L}[\Omega]$ | | | 3 | .7 | | | | | Inductance (L-L) | L _{L-L} [mH] | | | 6. | .0 | | | | | Number of pole pairs | p[] | | | 6 | 5 | | | | | Weight without brake | m [kg] | | | 4. | .9 | | | | | Weight with brake | m [kg] | | | 6 | .1 | | | | | Hollow shaft diameter | d _h [mm] | | | 2 | 7 | | | | Table 36.2 | | Symbol [Unit] | CHA-25A | | | | | | | |--|---|------------------|------|-----|-----|-----|------|--| | Motor feedback system | | M512P | | | | | | | | Ratio | i[] | 30 50 80 100 120 | | | | | | | | Moment of Inertia output side | | | | | | | | | | Moment of inertia without brake | J _{out} [kgm²] | 0.39 | 0.97 | 2.8 | 4.4 | 6.3 | 11.2 | | | Moment of inertia with brake | J _{out} [kgm²] | 0.46 | 1.27 | 3.2 | 5.1 | 7.3 | 13.0 | | | Moment of Inertia at motor | | | | | | | | | | Moment of inertia at motor without brake | J [x10 ⁻⁴ kgm ²] | 4.4 | | | | | | | | Moment of inertia at motor with brake | J [x10 ⁻⁴ kgm ²] | | | 5 | 5.1 | | | | #### Technical Data Brake Table 36.3 | | I | | | | | | | | | |------------------------------------|-------------------------------------|---------|----|------|------|-----|-----|--|--| | | Symbol [Unit] | CHA-25A | | | | | | | | | Ratio | i [] | 30 | 50 | 80 | 100 | 120 | 160 | | | | Brake voltage | U _{Br} [V _{DC}] | 24 ±10% | | | | | | | | |
Brake holding torque (at output) | T _{Br} [Nm] | 54 | 90 | 137 | 157 | 167 | 176 | | | | Brake current to open | I _{OBr} [A _{DC}] | | | 0 | .9 | | | | | | Brake current to hold (10V) | I _{HBr} [A _{DC}] | | | 0 | .4 | | | | | | Number of brake cyles at n = 0 rpm | | | | 1000 | 0000 | | | | | | Emergency brake cyles | | 200 | | | | | | | | | Opening time | t _o [ms] | 110 | | | | | | | | | Closing time | t _c [ms] | | | 7 | 0 | | | | | ### Performance Characteristics The performance curves shown below are valid for the specified ambient operating temperature if the motor terminal voltage is higher or equal to the values given in the ratings table. #### Legend Intermittent duty $U_M = 430 \text{ VAC}$ S3-ED 50% (1 min) $U_M = 220 \text{ VAC}$ ----- Table 38.1 | | | 1 | | | | | | |--|--|------|------|-------|------|------|------| | | Symbol [Unit] | | | СНА | -32A | | | | Motor feedback system | | | | M5 | 12P | | | | Ratio | i[] | 30 | 50 | 80 | 100 | 120 | 160 | | Maximum output torque | T _{max} [Nm] | 100 | 216 | 304 | 333 | 353 | 372 | | Maximum output speed | n _{max} [rpm] | 160 | 96 | 60 | 48 | 40 | 30 | | Maximum current | I _{max} [A _{rms}] | 7.1 | 9.8 | 8.3 | 7.2 | 6.3 | 5.3 | | Continuous stall torque | T ₀ [Nm] | 44 | 71 | 119 | 154 | 179 | 216 | | Continuous stall current | I _o [A _{rms}] | 3.2 | 3.2 | 3.2 | 3.2 | 3.2 | 2.9 | | Maximum DC bus voltage | $U_{DCmax}\left[V_{DC}\right]$ | | | 68 | 30 | | | | Electrical time constant (20° C) | t _e [ms] | | | 1. | 6 | | | | Mechanical time constant (20° C) | t _m [ms] | | | . 7 | .1 | | | | No load current | I _{NLS} [A _{rms}] | 0.30 | 0.30 | 0.20 | 0.20 | 0.20 | 0.18 | | No load running current constant (30° C) | K_{INL} [x10 ⁻³ A_{rms} /rpm] | 6 | 10 | 17 | 21 | 25 | 34 | | No load running current constant (80° C) | K_{INL} [x10 ⁻³ A_{rms} /rpm] | 2 | 3 | 6 | 7 | 8 | 11 | | Torque constant (at output) | k _{Tout} [Nm/A _{rms}] | 15.5 | 25.9 | 42.1 | 52.5 | 63.0 | 84.5 | | Torque constant (at motor) | k _{TM} [Nm/A _{rms}] | | | 0. | 55 | | | | AC voltage constant (L-L, 20° C, at motor) | k _{EM} [V _{rms} /1000 rpm] | | | 3 | 7 | | | | Motor terminal voltage (fundamental wave only) | $U_{M}\left[V_{rms}\right]$ | | | 220 . | 430 | | | | Demagnetisation current | I _E [A _{rms}] | | | 1 | 5 | | | | Maximum motor speed | n _{max} [rpm] | | | 48 | 00 | | | | Rated motor speed | n _N [rpm] | | | 35 | 00 | | | | Resistance (L-L, 20° C) | $R_{L\!-\!L}\left[\Omega ight]$ | | | 3 | .7 | | | | Inductance (L-L) | L _{L-L} [mH] | 6.0 | | | | | | | Number of pole pairs | p[] | 6 | | | | | | | Weight without brake | m [kg] | 7.6 | | | | | | | Weight with brake | m [kg] | | | 8 | .8 | | | | Hollow shaft diameter | d _h [mm] | | | 3 | 2 | | | # Moment of Inertia Table 38.2 | | Symbol [Unit] | CHA-32A | | | | | | | |--|---|---------|------|-----|-----|------|------|--| | Motor feedback system | | M512P | | | | | | | | Ratio | i[] | 30 | 50 | 80 | 100 | 120 | 160 | | | Moment of Inertia output side | | | | | | | | | | Moment of inertia without brake | J _{out} [kgm²] | 0.55 | 1.50 | 3.9 | 6.1 | 8.7 | 15.6 | | | Moment of inertia with brake | J _{out} [kgm²] | 0.64 | 1.77 | 4.5 | 7.1 | 10.2 | 18.2 | | | Moment of Inertia at motor | | | | | | | | | | Moment of inertia at motor without brake | J [x10 ⁻⁴ kgm ²] | 6.1 | | | | | | | | Moment of inertia at motor with brake | J [x10 ⁻⁴ kgm²] | | | 7 | .1 | | | | ## Technical Data Brake Table 38.3 | | Symbol [Unit] | CHA-32A | | | | | | |------------------------------------|-------------------------------------|---------|----|------|------|-----|-----| | Ratio | i[] | 30 | 50 | 80 | 100 | 120 | 160 | | Brake voltage | U _{Br} [V _{DC}] | | | 24 ± | 10% | | | | Brake holding torque (at output) | T _{Br} [Nm] | 54 | 90 | 144 | 180 | 216 | 288 | | Brake current to open | I _{OBr} [A _{DC}] | | | 0 | .9 | | | | Brake current to hold (10V) | I _{HBr} [A _{DC}] | | | 0 | .4 | | | | Number of brake cyles at n = 0 rpm | | | | 1000 | 0000 | | | | Emergency brake cyles | | | | 20 | 00 | | | | Opening time | t _o [ms] | 110 | | | | | | | Closing time | t _c [ms] | | | 7 | 0 | | | ### Performance Characteristics The performance curves shown below are valid for the specified ambient operating temperature if the motor terminal voltage is higher or equal to the values given in the ratings table. #### Legend Intermittent duty $U_M = 430 \text{ VAC}$ S3-ED 50% (1 min) Continuous duty $U_M = 220 \text{ VAC}$ ----- Table 40.1 | Table 40.1 | | I | | | | | | |--|--|------|------|---------|------|------|--| | | Symbol [Unit] | | | CHA-40A | | | | | Motor feedback system | | | | M512P | | | | | Ratio | i[] | 50 | 80 | 100 | 120 | 160 | | | Maximum output torque | T _{max} [Nm] | 402 | 519 | 568 | 617 | 647 | | | Maximum output speed | n _{max} [rpm] | 80 | 50 | 40 | 33 | 25 | | | Maximum current | I _{max} [A _{rms}] | 11.8 | 9.2 | 8.1 | 7.3 | 5.9 | | | Continuous stall torque | T _n [Nm] | 125 | 208 | 260 | 314 | 420 | | | Continuous stall current | I ₀ [A _{rms}] | 3.6 | 3.6 | 3.6 | 3.6 | 3.6 | | | Maximum DC bus voltage | $U_{DCmax}[V_{DC}]$ | | | 680 | | | | | Electrical time constant (20° C) | t¸ [ms] | | | 2.1 | | | | | Mechanical time constant (20° C) | t _m [ms] | | | 6.8 | | | | | No load current | I _{NLS} [A _{rms}] | 0.30 | 0.20 | 0.20 | 0.20 | 0.20 | | | No load running current constant (30° C) | K_{INL} [x10 ⁻³ A_{rms} /rpm] | 13 | 20 | 25 | 30 | 40 | | | No load running current constant (80° C) | K_{INL} [x10 ⁻³ A_{rms} /rpm] | 4 | 6 | 8 | 10 | 13 | | | Torque constant (at output) | k _{Tout} [Nm/A _{rms}] | 38 | 62 | 77 | 92 | 123 | | | Torque constant (at motor) | k _{TM} [Nm/A _{rms}] | | | 0.83 | | | | | AC voltage constant (L-L, 20° C, at motor) | k _{EM} [V _{rms} /1000 rpm] | | | 53 | | | | | Motor terminal voltage (fundamental wave only) | U _M [V _{rms}] | | | 220 430 | | | | | Demagnetisation current | I _E [A _{rms}] | | | 18 | | | | | Maximum motor speed | n _{max} [rpm] | | | 4000 | | | | | Rated motor speed | n _N [rpm] | | | 3000 | | | | | Resistance (L-L, 20° C) | $R_{LL}[\Omega]$ | | | 2.9 | | | | | Inductance (L-L) | L _{L-L} [mH] | 6.0 | | | | | | | Number of pole pairs | p[] | 6 | | | | | | | Weight without brake | m [kg] | 12.7 | | | | | | | Weight with brake | m [kg] | 14.8 | | | | | | | Hollow shaft diameter | d _h [mm] | | | 39 | | | | ## Moment of Inertia Table 40.2 | | Symbol [Unit] | CHA-40A | | | | | | | | |--|---|---------|------|------|------|------|--|--|--| | Motor feedback system | | M512P | | | | | | | | | Ratio | i[] | 50 | 80 | 100 | 120 | 160 | | | | | Moment of Inertia output side | | • | • | • | • | • | | | | | Moment of inertia without brake | J _{nut} [kgm²] | 3.40 | 8.60 | 13.5 | 19.4 | 34.6 | | | | | Moment of inertia with brake | J _{out} [kgm²] | 3.90 | 9.80 | 15.4 | 22.2 | 39.4 | | | | | Moment of Inertia at motor | | ' | ' | | 1 | ' | | | | | Moment of inertia at motor without brake | J [x10 ⁻⁴ kgm²] | | | 13.5 | | | | | | | Moment of inertia at motor with brake | J [x10 ⁻⁴ kgm ²] | | | 15.4 | | | | | | # Technical Data Brake Table 40.3 | | Symbol [Unit] | | | CHA-40A | | | | |------------------------------------|-------------------------------------|-----|-----|----------|-----|-----|--| | Ratio | i[] | 50 | 80 | 100 | 120 | 160 | | | Brake voltage | U _{Br} [V _{DC}] | | | 24 ±10% | | | | | Brake holding torque (at output) | T _{Br} [Nm] | 225 | 360 | 450 | 540 | 647 | | | Brake current to open | I _{OBr} [A _{DC}] | | | 0.7 | | | | | Brake current to hold (10V) | I _{HBr} [A _{DC}] | | | 0.3 | | | | | Number of brake cyles at n = 0 rpm | | | | 10000000 | | | | | Emergency brake cyles | | | | 200 | | | | | Opening time | t _o [ms] | 110 | | | | | | | Closing time | t _c [ms] | | | 70 | | | | ### Performance Characteristics The performance curves shown below are valid for the specified ambient operating temperature if the motor terminal voltage is higher or equal to the values given in the ratings table. #### Legend Intermittent duty Continuous duty U_M = 430 VAC ------ S3-ED 50% (1 min) ———— Table 42.1 | | Symbol [Unit] | | | CHA-50A | | | |--|--|------|------|---------|------|------| | Motor feedback system | | | | M512P | | | | Ratio | i[] | 50 | 80 | 100 | 120 | 160 | | Maximum output torque | T _{max} [Nm] | 715 | 941 | 980 | 1080 | 1180 | | Maximum output speed | n _{max} [rpm] | 70 | 44 | 35 | 30 | 22 | | Maximum current | I _{max} [A _{rms}] | 10.2 | 8.3 | 6.9 | 6.4 | 5.3 | | Continuous stall torque | T _o [Nm] | 194 | 363 | 456 | 550 | 736 | | Continuous stall current | $I_0[A_{rms}]$ | 2.9 | 3.2 | 3.2 | 3.2 | 3.1 | | Maximum DC bus voltage | $U_{DCmax}[V_{DC}]$ | | | 680 | | | | Electrical time constant (20° C) | t _e [ms] | | | 3.4 | | | | Mechanical time constant (20° C) | t _m [ms] | | | 4.7 | | | | No load current | I _{NLS} [A _{rms}] | 0.30 | 0.20 | 0.20 | 0.17 | 0.16 | | No load running current constant (30° C) | K _{INL} [x10 ⁻³ A _{rms} /rpm] | 12 | 20 | 25 | 29 | 39 | | No load running current constant (80° C) | K_{INL} [x10 ⁻³ A_{rms} /rpm] | 4 | 6 | 8 | 9 | 12 | | Torque constant (at output) | k _{Tout} [Nm/A _{rms}] | 74 | 121 | 145 | 181 | 242 | | Torque constant (at motor) | k _{TM} [Nm/A _{rms}] | | | 1.60 | | | | AC voltage constant (L-L, 20° C, at motor) | k _{EM} [V _{rms} /1000 rpm] | | | 104 | | | | Motor terminal voltage (fundamental wave only) | $U_{M}\left[V_{rms}\right]$ | | | 220 430 | | | | Demagnetisation current | I _E [A _{rms}] | | | 18 | | | | Maximum motor
speed | n _{max} [rpm] | | | 3500 | | | | Rated motor speed | n _N [rpm] | | | 2500 | | | | Resistance (L-L, 20° C) | $R_{L-L}\left[\Omega ight]$ | | | 3.5 | | | | Inductance (L-L) | L _{L-L} [mH] | 12 | | | | | | Number of pole pairs | p[] | 6 | | | | | | Weight without brake | m [kg] | 20.9 | | | | | | Weight with brake | m [kg] | | | 24.5 | | | | Hollow shaft diameter | d _h [mm] | | | 45 | | | ## Moment of Inertia Table 42.2 | | Symbol [Unit] | CHA-50A | | | | | | | |--|----------------------------|---------|------|------|------|------|--|--| | Motor feedback system | | M512P | | | | | | | | Ratio | i[] | 50 | 80 | 100 | 120 | 160 | | | | Moment of Inertia output side | | | | | | | | | | Moment of inertia without brake | J _{out} [kgm²] | 3.40 | 8.60 | 13.5 | 19.4 | 34.6 | | | | Moment of inertia with brake | J _{out} [kgm²] | 3.90 | 9.80 | 15.4 | 22.2 | 39.4 | | | | Moment of Inertia at motor | • | | | | | | | | | Moment of inertia at motor without brake | J [x10 ⁻⁴ kgm²] | | | 13.5 | | | | | | Moment of inertia at motor with brake | J [x10 ⁻⁴ kgm²] | | | 15.4 | | | | | ## Technical Data Brake Table 42.3 | | Symbol [Unit] | CHA-50A | | | | | | |------------------------------------|-------------------------------------|---------|-----|----------|-----|-----|--| | Ratio | i[] | 50 | 80 | 100 | 120 | 160 | | | Brake voltage | U _{Br} [V _{DC}] | | | 24 ±10% | | | | | Brake holding torque (at output) | T _{Br} [Nm] | 225 | 360 | 450 | 540 | 720 | | | Brake current to open | I _{OBr} [A _{DC}] | | | 0.7 | | | | | Brake current to hold (10V) | I _{HBr} [A _{DC}] | | | 0.3 | | | | | Number of brake cyles at n = 0 rpm | 100 | | | 10000000 | | | | | Emergency brake cyles | | | | 200 | | | | | Opening time | t _n [ms] | 110 | | | | | | | Closing time | t _c [ms] | | | 70 | | | | ### Performance Characteristics The performance curves shown below are valid for the specified ambient operating temperature if the motor terminal voltage is higher or equal to the values given in the ratings table. #### Legend Intermittent duty Continuous duty U_M = 430 VAC ------------ S3-ED 50% (1 min) ———— Table 44.1 | | Symbol [Unit] | | | CHA-58A | | | | | |--|--|------|------|---------|------|------|--|--| | Motor feedback system | | | | M512P | | | | | | Ratio | i [] | 50 | 80 | 100 | 120 | 160 | | | | Maximum output torque | T _{max} [Nm] | 1020 | 1480 | 1590 | 1720 | 1840 | | | | Maximum output speed | n _{max} [rpm] | 60 | 38 | 30 | 25 | 19 | | | | Maximum current | I _{max} [A _{rms}] | 14.4 | 12.8 | 11.1 | 10.0 | 8.1 | | | | Continuous stall torque | T _n [Nm] | 280 | 532 | 670 | 805 | 1080 | | | | Continuous stall current | $I_0[A_{rms}]$ | 4.2 | 4.6 | 4.6 | 4.6 | 4.6 | | | | Maximum DC bus voltage | $U_{DCmax}[V_{DC}]$ | | | 680 | | | | | | Electrical time constant (20° C) | t _e [ms] | | | 3.5 | | | | | | Mechanical time constant (20° C) | t _m [ms] | | | 5.4 | | | | | | No load current | I _{NLS} [A _{rms}] | 0.40 | 0.28 | 0.26 | 0.25 | 0.23 | | | | No load running current constant (30° C) | K_{INL} [x10 ⁻³ A_{rms} /rpm] | 19 | 30 | 38 | 46 | 61 | | | | No load running current constant (80° C) | K_{INL} [x10 ⁻³ A_{rms} /rpm] | 6 | 10 | 12 | 15 | 19 | | | | Torque constant (at output) | k _{Tout} [Nm/A _{rms}] | 75 | 122 | 152 | 183 | 244 | | | | Torque constant (at motor) | k _{TM} [Nm/A _{rms}] | | | 1.70 | | | | | | AC voltage constant (L-L, 20° C, at motor) | k _{EM} [V _{rms} /1000 rpm] | | | 105 | | | | | | Motor terminal voltage (fundamental wave only) | $U_{M}\left[V_{rms}\right]$ | | | 220 430 | | | | | | Demagnetisation current | I _E [A _{rms}] | | | 25 | | | | | | Maximum motor speed | n _{max} [rpm] | | | 3000 | | | | | | Rated motor speed | n _N [rpm] | | | 2000 | | | | | | Resistance (L-L, 20° C) | $R_{L-L}[\Omega]$ | | | 2.4 | | | | | | Inductance (L-L) | L _{L-L} [mH] | 9 | | | | | | | | Number of pole pairs | p[] | 6 | | | | | | | | Weight without brake | m [kg] | | 28.2 | | | | | | | Weight with brake | m [kg] | | | 32.0 | | | | | | Hollow shaft diameter | d _h [mm] | | | 45 | | | | | ## Moment of Inertia Table 44.2 | | Symbol [Unit] | CHA-58A | | | | | | | | |--|----------------------------|---------|------|------|------|-----|--|--|--| | Motor feedback system | | M512P | | | | | | | | | Ratio | i[] | 50 | 80 | 100 | 120 | 160 | | | | | Moment of Inertia output side | | | • | | | | | | | | Moment of inertia without brake | J _{out} [kgm²] | 11.9 | 30.6 | 47.8 | 68.8 | 122 | | | | | Moment of inertia with brake | J _{out} [kgm²] | 12.1 | 31.1 | 48.5 | 69.8 | 124 | | | | | Moment of Inertia at motor | | | , | | | | | | | | Moment of inertia at motor without brake | J [x10 ⁻⁴ kgm²] | | | 47.8 | | | | | | | Moment of inertia at motor with brake | J [x10 ⁻⁴ kgm²] | | | 48.5 | | | | | | ## Technical Data Brake Table 44.3 | | ı | I | | | | | | |------------------------------------|-------------------------------------|---------|-----|----------|------|------|--| | | Symbol [Unit] | CHA-58A | | | | | | | Ratio | i [] | 50 | 80 | 100 | 120 | 160 | | | Brake voltage | U _{Br} [V _{DC}] | | | 24 ±10% | | | | | Brake holding torque (at output) | T _{Br} [Nm] | 450 | 720 | 900 | 1080 | 1440 | | | Brake current to open | I _{OBr} [A _{DC}] | | | 0.7 | | | | | Brake current to hold (10V) | I _{HBr} [A _{DC}] | | | 0.5 | | | | | Number of brake cyles at n = 0 rpm | | | | 10000000 | | | | | Emergency brake cyles | | 200 | | | | | | | Opening time | t _o [ms] | 110 | | | | | | | Closing time | t _c [ms] | | | 70 | | | | 1018854 10/2014 ### Performance Characteristics The performance curves shown below are valid for the specified ambient operating temperature if the motor terminal voltage is higher or equal to the values given in the ratings table. #### Legend Intermittent duty Continuous duty U_M = 430 VAC ------- S3-ED 50% (1 min) ———— # 3.3.3 Dimensions Detailed 2D drawings and 3D models can be found at the following Quicklink: ### QUICKLINK www.harmonicdrive.de/CAD1010 Table 46.3 | | Symbol [Unit] | CHA-14A-E | CHA-17A-E | |------------------------|---------------|--------------------|--------------------| | Motor feedback system | | RES / D2048/ M128S | RES / D2048/ M128S | | Length (without brake) | L [mm] | 97.5 | 101 | | Length (with brake) | L1 [mm] | 120.6 | 123 | | Standard cable length | I [m] | approx. 1.5 | approx. 1.5 | Table 46.6 | | Symbol [Unit] | CHA-14A | CHA-17A | |------------------------|---------------|---------------------|---------------------| | Motor feedback system | | RES / D2048 / M128S | RES / D2048 / M128S | | Length (without brake) | L [mm] | 97.5 | 101 | | Length (with brake) | L1 [mm] | 120.6 | 123 | | Standard cable length | l [m] | approx. 1.5 | approx. 1.5 | Illustration 47.1 CHA-20A [mm] Illustration 47.2 CHA-25A [mm] Table 47.3 | | Symbol [Unit] | CHA-20A | CHA-25A | |------------------------|---------------|-----------------------|-----------------------| | Motor feedback system | | C1024 / S1024 / M1024 | C1024 / S1024 / M1024 | | Length (without brake) | L [mm] | 118 | 132.5 | | Length (with brake) | L1 [mm] | 138 | 160 | | Standard cable length | l [m] | approx. 1.8 | approx. 1.8 | CHA-32A [mm] Illustration 47.5 CHA-40A [mm] Table 47.6 | | Symbol [Unit] | CHA-32A | CHA-40A | |------------------------|---------------|-----------------------|-----------------------| | Motor feedback system | | C1024 / S1024 / M1024 | C1024 / S1024 / M1024 | | Length (without brake) | L [mm] | 145 | 158 | | Length (with brake) | L1 [mm] | 172.5 | 177 | | Standard cable length | l [m] | approx. 1.8 | approx. 1.8 | Illustration 48.1 CHA-50A [mm] Illustration 48.2 CHA-58A [mm] Table 48.3 | | Symbol [Unit] | CHA-50A | CHA-58A | |------------------------|---------------|-----------------------|-----------------------| | Motor feedback system | | C1024 / S1024 / M1024 | C1024 / S1024 / M1024 | | Length (without brake) | L [mm] | 189 | 205 | | Length (with brake) | L1 [mm] | 208 | 226 | | Standard cable length | l [m] | approx. 1.8 | approx. 1.8 | Table 48.6 | | Symbol [Unit] | CHA-20A | CHA-25A | |------------------------|---------------|---------|---------| | Motor feedback system | | M512P | M512P | | Length (without brake) | L [mm] | 118 | 132 | | Length (with brake) | L1 [mm] | 137 | 159.5 | Illustration 49.1 CHA-32A-M512P [mm] Illustration 49.2 CHA-40A-M512P [mm] Table 49.3 | | Symbol [Unit] | CHA-32A | CHA-40A | |------------------------|---------------|---------|---------| | Motor feedback system | | M512P | M512P | | Length (without brake) | L [mm] | 144.5 | 157 | | Length (with brake) | L1 [mm] | 172 | 176 | Table 49.6 | | Symbol [Unit] | CHA-50A | CHA-58A | |------------------------|---------------|---------|---------| | Motor feedback system | | M512P | M512P | | Length (without brake) | L [mm] | 188.5 | 204.4 | | Length (with brake) | L1 [mm] | 207.5 | 225.4 | # 3.3.4 Accuracy ### Table 50.1 | | Symbol
[Unit] | CHA-14A | | | CHA-17A | | | CHA-20A | | | CHA-25A | | | |-----------------------|------------------|---------|---------|------|---------|---------|------|---------|-----|---------|---------|----|-------| | Ratio | i[] | 30 | 50 | > 50 | 30 | 50 | > 50 | 30 | 50 | > 50 | 30 | 50 | > 50 | | Transmission accuracy | [arcmin] | < 2 | < 1.2 | <1 | < 2 | < 1.2 | <1 | < 1.5 | < 1 | < 0.8 | < 1.5 | <1 | < 0.8 | | Repeatability | [arcmin] | | < ± 0.1 | | | < ± 0.1 | | < ± 0.1 | | < ± 0.1 | | | | | Hysteresis loss | [arcmin] | < 3 | <1 | < 1 | < 3 | <1 | < 1 | < 3 | < 1 | <1 | < 3 | <1 | <1 | | Lost Motion | [arcmin] | | < 1 | | | <1 | | <1 | | | < 1 | | | #### Table 50.2 | | Symbol
[Unit] | | CHA-32A | | CHA: | -40A | CHA | -50A | CHA-58A | | | |-----------------------|------------------|-------|---------|-------|---------|-------|---------|-------|---------|-------|--| | Ratio | i[] | 30 | 50 | > 50
 50 | > 50 | 50 | > 50 | 50 | > 50 | | | Transmission accuracy | [arcmin] | < 1.5 | < 1 | < 0.8 | < 0.7 | < 0.5 | < 0.7 | < 0.5 | < 0.7 | < 0.5 | | | Repeatability | [arcmin] | | < ± 0.1 | | < ± 0.1 | | < ± 0.1 | | < ± 0.1 | | | | Hysteresis loss | [arcmin] | < 3 | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | <1 | | | Lost Motion | [arcmin] | | <1 | | <1 | | <1 | | <1 | | | # 3.3.5 Torsional Stiffness ### Table 50.3 | | Symbol (Unit) | CHA-14A | | | CHA-17A | | | CHA-20A | | CHA-25A | | | | | |-------|---------------|---------|-----|-----|---------|-----|-----|---------|----|---------|----|----|-----|--| | T1 | [Nm] | | 2 | | | 3.9 | | | 7 | | 14 | | | | | T2 | [Nm] | | 6.9 | | | 12 | | | 25 | | | 48 | | | | Ratio | i [] | 30 | 50 | >50 | 30 | 50 | >50 | 30 | 50 | >50 | 30 | 50 | >50 | | | K3 | [x10³ Nm/rad] | 3.4 | 5.7 | 7.1 | 6.7 | 13 | 16 | 11 | 23 | 29 | 21 | 44 | 57 | | | K2 | [x10³ Nm/rad] | 2.4 | 4.7 | 6.1 | 4.4 | 11 | 14 | 7.1 | 18 | 25 | 13 | 34 | 50 | | | K1 | [x10³ Nm/rad] | 1.9 | 3.4 | 4.7 | 3.4 | 8.1 | 10 | 5.7 | 13 | 16 | 10 | 25 | 31 | | ### Table 50.4 | | Symbol (Unit) | CHA-32A | | | | CHA-40A | | | -50A | CHA-58A | | | |-------|---------------|---------|-----|-----|----|---------|-----|-----|------|---------|-----|--| | T1 | [Nm] | | 29 | | | 54 | | 10 | 18 | 168 | | | | T2 | [Nm] | | 108 | | | 196 | | | 382 | | 598 | | | Ratio | i [] | 30 | 50 | >50 | 30 | 50 | >50 | 50 | >50 | 50 | >50 | | | K3 | [x10³ Nm/rad] | 49 | 98 | 120 | - | 180 | 230 | 340 | 440 | 540 | 710 | | | K2 | [x10³ Nm/rad] | 30 | 78 | 110 | - | 140 | 200 | 280 | 400 | 440 | 610 | | | K1 | [x10³ Nm/rad] | 24 | 54 | 67 | - | 100 | 130 | 200 | 250 | 310 | 400 | | # 3.3.6 Output Bearing CHA series AC hollow shaft Servo Actuators incorporate a high stiffness cross roller bearing to support output loads. This specially developed bearing can withstand high axial and radial forces as well as high tilting moments. The reduction gear is thus protected from external loads, so guaranteeing a long life and consistent performance. The integration of an output bearing also serves to reduce subsequent design and production costs, by removing the need for an additional output bearing in many applications. Furthermore, installation and assembly of the CHA servo actuators are greatly simplified. ### Technical Data Table 51.1 | | Symbol [Unit] | CHA-14A | CHA-17A | CHA-20A | CHA-25A | CHA-32A | CHA-40A | CHA-50A | CHA-58A | |-----------------------------|------------------------------|---------|---------|---------|---------|---------|---------|---------|---------| | Bearing type ¹⁾ | | F | F | F | С | С | С | С | С | | Pitch circle diameter | d _p [mm] | 0.049 | 0.058 | 0.070 | 0.088 | 0.114 | 0.134 | 0.171 | 0.192 | | Offset | R [mm] | 0.014 | 0.014 | 0.016 | 0.018 | 0.020 | 0.026 | 0.028 | 0.029 | | Dynamic load rating | C [N] | 8500 | 11500 | 24200 | 30000 | 34500 | 43300 | 81600 | 87400 | | Stating load rating | C ₀ [N] | 11400 | 17100 | 31000 | 45000 | 59000 | 81600 | 149000 | 171000 | | Dynamic tilting moment 2) | M dyn (max) [Nm] | 73 | 114 | 172 | 254 | 578 | 886 | 1558 | 2222 | | Static tilting moment 3) | M _{0 (max)} [Nm] | 155 | 276 | 603 | 1050 | 2242 | 3645 | 8493 | 10944 | | Tilting moment stiffness 5) | K _B [Nm/arcmin] | 23 | 40 | 70 | 114 | 350 | 522 | 1020 | 1550 | | Dynamic axial load 4) | F _{A dyn (max)} [N] | 2880 | 4600 | 15800 | 19200 | 22300 | 42000 | 56100 | 57700 | | Dynamic radial load 4) | F _{R dyn (max)} [N] | 1450 | 2300 | 8600 | 12700 | 14600 | 27500 | 37300 | 38400 | - ¹⁾ C=Cross roller bearing, F = Four point contact bearing - These values are valid for moving gears. They are not based on the equation for lifetime of the output bearing but on the maximum allowable deflection of the Harmonic Drive® component set. The values indicated in the table must not be exceeded even if the lifetime equation of the bearing permits higher values. - These values are valid for gears at a standstill and for a static load safety factor $f_s = 1.8$ for size 14 ... 20 and $f_s = 1.5$ for size 25 ... 58. - These data are valid for n = 15 rpm and L_{10} = 15000h - These data are only valid if the following conditions are fulfilled: - Average value Illustration 51.2 ### **Tolerances** Table 51.3 | Table 51.5 | | | | | | | | | | |------------|---------------|---------|---------|---------|---------|---------|---------|---------|---------| | | Symbol [Unit] | CHA-14A | CHA-17A | CHA-20A | CHA-25A | CHA-32A | CHA-40A | CHA-50A | CHA-58A | | а | [mm] | 0.010 | 0.010 | 0.010 | 0.010 | 0.012 | 0.012 | 0.015 | 0.015 | | b | [mm] | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | | С | [mm] | 0.010 | 0.010 | 0.010 | 0.010 | 0.012 | 0.012 | 0.015 | 0.015 | | d | [mm] | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 10/18854 10/2014 51 ### 3.3.7 Motor Feedback Systems ### Design and Operation For accurate position setting, the servo motor and its control device are fitted with a measuring device (feedback), which determines the current position (e.g. the angle of redation set for a starting position) of the motor. This measurement is effected via a redary encoder, e.g. a resolver, an incremental encoder or an absolute encoder. The position controller compares the signal from this encoder with the pre-set position value. If there is any deviation, then the motor is turned in the direction which represents a shorter path to the set value which leads to the deviation being reduced. The procedure repeats itself until the value lies incrementally or approximately within the tolerance limits. Alternatively, the motor position can also be digitally recorded and compared by computer to a set value. Servo motors and actuators from Harmonic Drive AG use various motor feedback systems which are used as position transducers to fulfil several requirements. #### Commutation Commutation signals or absolute position values provide the necessary information about the redor position, in order to guarantee correct commutation. ### Actual Speed The actual speed is obtained in the servo controller suing the feedback signal, from the cyclical change in position information. ### **Actual Position** #### Incremental encoder The actual signal value needed for setting the position is formed by adding up the incremental position changes. Where incremental encoders have square wave signals, definition of the edge evaluation can be quadrupled (quad counting). Where incremental encoders have SIN / COS signals, then the definition can be increased by interpolation in the control device. ### Absolute encoder Absolute encoders deliver absolute position information about one (single turn) or several (multi-turn) redations. This information can on the one hand provide the redor position for commutation and on the other hand possibly a reference of travel. Where absolute encoders have additional incremental signals, then typically the absolute position information can be read at power up and the incremental signals then evaluated to determine the redation and actual position value. Fully digital absolute encoders as motor feedback systems have such a high definition of the absolute value that there is no Fully digital absolute encoders as motor feedback systems have such a high definition of the absolute value that there is no need for additional incremental signals. ### Resolution In conjunction with the Harmonic Drive AG high precision gears, the output side position can be recorded via the motor feed-back system without any additional angle encoders having to be used. The resolution of the motor feedback system can also be multiplied by gear ratio. ### Output Side Angle Measurement Devices Where applications place higher demands on accuracy or need torsion compensation at high torque load, the CHA Series Actuators can be fitted with absolute measurement encoders directly to the actuator output (Option EC). # Incremental motor feedback with SIN / COS signals reference and commutation signals Table 53.1 | Ordering code | Symbol [Unit] | | | C10 |)24 | | | |--|------------------------|--------|------|---------|---------|------|------| | Manufacturer's designation | | | ССК | | | | | | Power supply 1) | U _b [VDC] | | | 5 ± 1 | 10% | | | | Current consumption 1) | I [mA] | | | 15 | 50 | | | | Incremental signals | $u_{pp}[V_{ss}]$ | | | 1+20% | / -25% | | | | Signal form | | | | sinus | oidal | | | | Number of pulses | n ₁ [A / B] | 1024 | | | | | | | Commutation signals | $u_{pp}[V_{ss}]$ | 1 | | | | | | | Signal form | | | | sinus | oidal | | | | Number of pulses | n ₂ [C / D] | | | | 1 | | | | Reference signal | n ₃ [R] | | | | 1 | | | | Accuracy 1) | [arcsec] | | | ± | 12 | | | | Incremental resolution (motor side) 2) | inc [] | 262144 | | | | | | | | | | | Gear ra | tio CHA | | | | Resolution (output side) 2) | i[] | 30 | 50 | 80 | 100 | 120 | 160 | | | [arcsec] | 0.16 | 0.10 | 0.06 | 0.05 | 0.04 | 0.03 | ¹⁾ Source: Manufacturer # Signal Wave Form ### Illustration 53.2 Valid for direction of rotation - ${\sf CW}$ at the motor shaft (when viewed from the front face of the motor) - CCW at the output flange ²⁾ For interpolation with 8 bit ## S1024 # Single turn absolute motor feedback system with incremental SIN / COS signals and HIPERFACE $^\circ$ data interface Table 54.1 | Ordering code | Symbol [Unit] | S1024 | | | |--|----------------------------|-------------------------------|--|--| | Manufacturer's designation | | SCK | | | | Type identifier 1) | | 22 _h | | | | Protocol | | HIPERFACE® | | | | Power supply ¹⁾ | U _b [VDC] | 7 12 | | | | Current consumption (max no load) 1) | I [mA] | 110 | | | | Incremental signals | $u_{pp}[V_{ss}]$ | 0.8 1.1 | | | | Signal form | | sinusoidal | | | | Number of pulses | n ₁ [SIN / COS] | 1024 | | | | Absolute position / revolution (motor side) 3) | | 32768 | | | | Available memory in EEPROM | [Bytes] | 128 | | | |
Accuracy 1) | [arcsec] | ±180 | | | | | | Gear ratio CHA | | | | Resolution of the absolute value (output side) | i[] | 30 50 80 100 120 160 | | | | | [arcsec] | 1.4 0.8 0.5 0.4 0.4 0.3 | | | | Resolution incremental (motor side) 2) | inc [] | 262144 | | | | | | Gear ratio CHA | | | | Resolution (output side) ²⁾ | i[] | 30 50 80 100 120 160 | | | | | [arcsec] | 0.16 0.10 0.06 0.05 0.04 0.03 | | | Source: Manufacturerfor interpolation with 8 bit # M1024 # Multi-turn absolute motor feedback system with incremental SIN / COS signals and HIPERFACE $^{\circ}$ data interface Table 54.1 | Ordering code | Symbol [Unit] | | | M1 | 024 | | | |--|------------------------------------|--------------------|------|---------|----------------|------|------| | Manufacturer's designation | | | | S | CL | | | | Type identifier ¹⁾ | | | | 2 | 7 _h | | | | Protocol | | | | HIPER | FACE® | | | | Power supply 1) | U _b [VDC] | | | 7 | . 12 | | | | Current consumption 1) | I [mA] | | | 1 | 10 | | | | Incremental signals | u _{pp} [V _{ss}] | | | 0.8 | 1.1 | | | | Signal form | | | | sinus | soidal | | | | Number of pulses | n ₁ [SIN / COS] | 1024 | | | | | | | Absolute position / revolution (motor side) 3) | | 32768 | | | | | | | Number of revolutions | | | | 40 | 196 | | | | Available memory in EEPROM | [Bytes] | | | 12 | 28 | | | | Accuracy 1) | [arcsec] | | | ±1 | 80 | | | | | | | | Gear ra | tio CHA | | | | Resolution of the absolute value (output side) | i[] | 30 | 50 | 80 | 100 | 120 | 160 | | | [arcsec] | 1.4 | 0.8 | 0.5 | 0.4 | 0.4 | 0.3 | | Number of revolutions (at output side) | | 136 81 51 40 34 25 | | | 25 | | | | Incremental resolution (motor side) 2) | inc [] | 262144 | | | | | | | | | | | Gear ra | tio CHA | | | | Resolution (output side) 2) | i | 30 | 50 | 80 | 100 | 120 | 160 | | | [arcsec] | 0.16 | 0.10 | 0.06 | 0.05 | 0.04 | 0.03 | ¹⁾ Source: Manufacturer ³⁾ increasing position values ⁻ for redation in clockwise direction, looking at the motor shaft ⁻ for redation in counter clockwise direction, looking at the output flange ³⁾ increasing position values ²⁾ for interpolation with 8 bit ⁻ for redation in clockwise direction, looking at the motor shaft ⁻ for redation in counter clockwise direction, looking at the output flange # M512P ### Multi-turn absolute motor feedback system with incremental SIN / COS signals and EnDat data interface Table 55.1 | Ordering code | Symbol [Unit] | | | M5 | 12P | | | |--|----------------------|--------|------|---------|---------|------|------| | Manufacturer's designation | | | | EQN | 1125 | | | | Protocol | | | | EnDa | at 2.2 | | | | Power supply 1) | U _b [VDC] | | | 3.6 | 14 | | | | Current consumption (typically @ 5 VDC, without load) 1) | I [mA] | | | 10 | 05 | | | | Incremental signals | $u_{pp}[V_{ss}]$ | | | 0.8 | 1.2 | | | | Signal form | | | | sinus | soidal | | | | Number of pulses | n, [SIN / COS] | 512 | | | | | | | Absolute position / revolution (motor side) 3) | | 8192 | | | | | | | Number of revolutions | | | | 40 | 196 | | | | Accuracy 1) | [arcsec] | | | ± | 60 | | | | | | | | Gear ra | tio CHA | | | | Resolution of the absolute value (output side) | i[] | 30 | 50 | 80 | 100 | 120 | 160 | | | [arcsec] | 5.3 | 3.2 | 2.0 | 1.6 | 1.4 | 1.0 | | Number of revolutions (at output side) | | 136 | 81 | 51 | 40 | 34 | 25 | | Incremental resolution (motor side) 2) | inc [] | 131072 | | | | | | | | | | | Gear ra | tio CHA | | | | Resolution (output side) 2) | i [] | 30 | 50 | 80 | 100 | 120 | 160 | | | [arcsec] | 0.33 | 0.20 | 0.12 | 0.10 | 0.08 | 0.06 | ¹⁾ Source: Manufacturer 1018854 10/2014 55 increasing position values - for redation in clockwise direction, looking at the motor shaft 2) for interpolation with 8 bit ⁻ for redation in counter clockwise direction, looking at the output flange # M128S # Multi-turn absolute motor feedback system with incremental SIN / COS signals and SSI data interface Table 56.1 | Ordering code | Symbol (Unit) | | | M1 | 285 | | | |---|----------------------|--------------------|------|---------|---------|------|------| | Manufacturer's designation | | GEL | | | | | | | Protocol | | | | S | SI | | | | Power supply 1) | U _b [VDC] | | | 5 | . 30 | | | | Current consumption (without load) 1) | P [W] | | | 0 | .1 | | | | Incremental signals | $u_{pp}[V_{ss}]$ | | | | 1 | | | | Signal form | | | | sinus | oidal | | | | Number of pulses | n, | | | 12 | 28 | | | | Absolute position / revolution (motor side) 3) | | 131072 | | | | | | | Number of revolutions | | 4096 | | | | | | | Available memory in EEPROM | [Bytes] | | | | - | | | | Accuracy 1) | [arcsec] | | | ± 3 | 860 | | | | | | | | Gear ra | tio CHA | | | | Resolution of the absolute value (output side) | i[] | 30 | 50 | 80 | 100 | 120 | 160 | | | [arcsec] | 0.4 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | | Number of revolutions (at output side) | | 136 81 51 40 34 25 | | | 25 | | | | Incremental resolution (motor side) ²⁾ | inc [] | 32768 | | | | | | | | | | | Gear ra | tio CHA | | | | Resolution (output side) 2) | i[] | 30 | 50 | 80 | 100 | 120 | 160 | | | [arcsec] | 1.32 | 0.79 | 0.49 | 0.40 | 0.33 | 0.25 | ¹⁾ Source: Manufacturer # RES ### Resolver Table 56.2 | Ordering code | Symbol [Unit] | RES | | | |---|----------------------|----------------------|--|--| | Manufacturer's designation | | RE | | | | Power supply ¹⁾ | U _b [VAC] | 7 | | | | Current consumption (max., without Last) 1) | I [mA] | 50 | | | | Input frequency | f [kHz] | 5 10 | | | | Number of pole pairs, Transmission ratio | | 1 | | | | Transformation ratio 1) | ü[] | 0.5 ±10% | | | | Accuracy 1) | [arcmin] | ± 10 | | | | Incremental resolution (motor side) 2) | [inc] | 2048 | | | | | | Gear ratio CHA | | | | Resolution (output side) ²⁾ | i[] | 30 50 80 100 120 160 | | | | | [arcsec] | 22 13 8 7 6 4 | | | ¹⁾ Source: Manufacturer $^{^{2)}}$ for Interpolation with 8 bit $^{^{\}scriptscriptstyle 3)}$ increasing position values ⁻ for rotation in clockwise direction, looking at the motor shaft ⁻ for rotation in counter clockwise direction, looking at the output flange er ³⁾ increasing position values ²⁾ for interpolation with 8 bit ⁻ for redation in clockwise direction, looking at the motor shaft ⁻ for redation in counter clockwise direction, looking at the output flange # D2048 # Incremental motor feedback system with square wave signals, reference signal and commutation signals (RS 422 standard) Table 57.1 | Ordering code | Symbol [Unit] | D2048 | | | | | | |--|----------------------------|-------|-----|---------|---------|-----|-----| | Manufacturer's designation | | | | El | BG | | | | Power supply ¹⁾ | U₅[VDC] | | | 5 ± | 10% | | | | Current consumption (without load) 1) | I [mA] | | | 4 | 10 | | | | Incremental signals | | | | RS | 422 | | | | Wave form | | | | squar | e wave | | | | Number of pulses | n ₁ [A / B] | 2048 | | | | | | | Commutation signals | | | | RS | 422 | | | | Signal form | | | | squar | e wave | | | | Number of pulses | n ₂ [U / V / W] | | | | 5 | | | | Reference signal | n ₃ [Z] | | | | 1 | | | | Accuracy 1) | [arcsec] | | | ± 6 | 500 | | | | Incremental resolution (motor side) 2) | [qc] | 8192 | | | | | | | | | | | Gear ra | tio CHA | | | | Resolution (output side) ²⁾ | i[] | 30 | 50 | 80 | 100 | 120 | 160 | | | [arcsec] | 5.3 | 3.2 | 2.0 | 1.6 | 1.4 | 1.0 | ¹⁾ Source: Manufacturer # Signal Wave Form ### Illustration 57.2 Valid for direction of rotation - CW motor shaft (with a view from the front of the motor shaft) - CCW output flange for CHA $\,$ ²⁾ for quadcounting # 3.3.8 Temperature Sensors For motor predection at speeds greater than zero, temperature sensors are integrated in the motor windings. For applications with high load where the speed is zero, additional predection (eg I ² t monitoring) is recommended. When using the KTY 84-130 the values given in the table can be parametrized in the servo controller or an external evaluation unit. Table 58.1 | Sensor type Sensor type | Parameter | T _{Nat} [° C] | |-------------------------|-----------------------------|------------------------| | PTC-116-K135-145° | Rated operating temperature | 145 | PTC thermistors, because of their very high positive temperature coefficient at nominal operating temperature (Tnat), are ideally suited for motor winding predection. Due to their principle, the PTC sensors should only be used to monitor the winding temperature. Table 58.3 | Sensor type | Parameter | Symbol [Unit] | Warning | Shutdown | |--------------|-------------|---------------|----------|----------| | VTV 0.4.13.0 | Temperature | T [° C] | 80 | 90 | | KTY 84-130 | Resistance | R [Ω] | 882 ± 3% | 940 ± 3% | The KTY sensor is used for temperature measurement and monitoring the motor winding. Because the KTY sensor provides an analogue temperature measurement, it is also possible to predect the actuator grease from temperature overload. Temperature sensors used in the CHA Actuator Series meet the requirements for safe separation according to EN50178. # 3.3.9 Electrical Connections # CHA-xx-H-C1024 / H-M512P / H-M128S ### Table 59.1 | Motor connector | 6 / M23 x 1 | |-------------------|-------------------------------| | Cable plug | 6 / M23 x 1 / Part no. 301193 | | External diameter | ca. 26 mm | | Length | ca. 60 mm | ### Illustration 59.2 Table 59.3 | | | СНА- | 20 / 25 / 3 | 2 / 40 / 50 | O / 58 | | | | CHA- | 14 / 17 | | | |----------------------------------|-----|-------|-----------------|-------------|--------|-------|------|-------|-----------------|---------|-------|-------| | Connector pin | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 | | Motor phase | U | V | PE | BR+ | BR- | W | U | V | PE | BR+ | BR- | W | | Colour | red | black | green
yellow | white | brown | white | red | black | green
yellow | black | white
| white | | Cross section [mm ²] | 0.5 | 0.5 | 0.5 | 0.25 | 0.25 | 0.5 | 0.34 | 0.34 | 0.34 | 0.15 | 0.15 | 0.34 | Table 59.4 | Encoder connector | 17 / M23 x 1 | |-------------------|--------------------------------| | Cable plug | 17 / M23 x 1 / Part no. 270199 | | External diameter | ca. 26 mm | | Length | ca. 60 mm | Illustration 59.5 Table 59.6 | Connector pin | 1 | 2 | 3 | 4 | 5 | 6 | 7
(15) | 8 | 9 | 10
(16) | 11 | 12 | 13 | 14 | 15
(7) | 16
(10) | 17 | |---------------------|------------|------------|-------|-----------------|-----------|------|---------------|----------------|---------------|--------------|------------|------------|--------|----------------|---------------|--------------|-----------------| | C 1024 Signal | A+ | A- | R+ | D- | C+ | C- | GND | Temp+
KTY | Temp-
KTY | Up | B+ | B- | R- | D+ | GND
Sensor | Up
Sensor | Inner
Shield | | Colour | yellow | green | red | white
yellow | i niiio i | grey | brown
blue | green
black | green
red | brown
red | black | brown | orange | white
black | | | | | Cross section [mm²] | | | 0. | .14 | | | 0.5 | 0. | 25 | 0.5 | | 0. | 14 | | | | | | M512P Signal | A+ | A- | Data+ | n.c. | Clock+ | n.c. | GND | Temp+
KTY | Temp-
KTY | Up | B+ | B- | Data- | Clock- | GND
Sensor | Up
Sensor | Inner
Shield | | Colour | yellow | green | red | white
yellow | | grey | brown
blue | green
black | green
red | brown
red | black | brown | orange | white
black | | | | | Cross section [mm²] | | | 0. | .14 | | | 0.5 | 0 | 25 | 0.5 | | 0. | 14 | | | | | | M128 Signal | A+
Cos+ | A-
Cos- | Data+ | n.c. | Clock+ | n.c. | GND | Temp+
KTY | Temp-
KTY | Up | B+
SIN+ | B-
SIN- | Data- | Clock- | GND
Sensor | Up
Sensor | Inner
shield | | Colour | red | white | green | - | blue | - | black | white
brown | white
blue | red | black | white | white | white | | | | | Cross section [mm²] | | | 0. | .15 | | | 0.5 | 0. | 15 | 0.5 | | 0. | 15 | | | | | # Connecting cables SINAMICS S120 with SMC modul Table 60.1 | Power Connection | | |------------------------|--------------------| | CHA without brake | 6FX8002-5CA01-1xx0 | | CHA with brake | 6FX8002-5DA01-1xx0 | | | | | Motor feedback | | | Motor feedback H-C1024 | 6FX8002-2CA31-1xx0 | # Connecting cables with flying leads Table 60.2 | Version | Part no. | Length [m] | |--------------------|--|---------------------------| | H-C1024 | 308853
308854
308855
308856
308857 | 5
10
15
20
25 | | H-M512P
H-M128S | 308858
308859
308860
308861
308862 | 5
10
15
20
25 | # Connecting cables for the connection to YukonDrive $^{\!\circ}$ Table 60.3 | Version | Part no. | Length [m] | |---------|----------------------------|--------------| | H-M128S | 314260
314261
314262 | 3
5
10 | ### CHA-xx-H-RES ### Table 61.1 | Motor connector | 6 / M23 x 1 | |-------------------|-------------------------------| | Cable plug | 6 / M23 x 1 / Part no. 301193 | | External diameter | ca. 26 mm | | Length | ca. 60mm | ### Table 61.3 | | CHA-14 / 17 | | | | | | | | | |---------------------|-------------|-------|-----------------|-------|-------|-------|--|--|--| | Connector pin | 1 | 2 | 3 | 4 | 5 | 6 | | | | | Motor phase | U | V | PE | BR+ | BR- | W | | | | | Colour | red | black | green
yellow | black | white | white | | | | | Cross section [mm²] | 0.34 | 0.34 | 0.34 | 0.15 | 0.15 | 0.34 | | | | ### Illustration 61.2 ### Table 61.4 | Encoder connector | 12 / M23 x 1 | |-------------------|--------------------------------| | Cable plug | 12 / M23 x 1 / Part no. 303494 | | External diameter | ca. 26 mm | | Length | ca. 60 mm | ### Illustration 61.5 Table 61.6 | Connector pin | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |---------------------|-------|--------|---|---|---|---|---------|--------------|----------------|------|-------|-------| | RES Signal | SIN+ | SIN- | | | | | Vss- | Temp+
KTY | Temp-
KTY | Vss+ | COS+ | COS- | | Colour | green | yellow | - | - | - | - | violett | grey | black
white | blue | black | brown | | Cross section [mm²] | 0. | 15 | | | | | 0.15 | 0. | 15 | 0.15 | 0. | 15 | # Connecting cables SINAMICS S120 with SMC modul Table 61.7 | Power Connection | | |-------------------|--------------------| | CHA without brake | 6FX8002-5CA01-1xx0 | | CHA with brake | 6FX8002-5DA01-1xx0 | | Motor feedback | | | RES | 6FX8002-2CF02-1xx0 | ## CHA-xx-H-S1024 / H-M1024 ### Table 62.1 | | | CHA-20 / 25 / 32 / 40 / 50 / 58 | | | | | | | | |---------------------|-----|---------------------------------|-------|-------|-------|-------|--------------|--------------|--| | Motor phase | U | PE | W | V | BR+ | BR- | Temp+
PTC | Temp-
PTC | | | Colour | red | green
yellow | white | black | white | brown | green | yellow | | | Cross section [mm²] | | 0 | .5 | | | 0.3 | 25 | | | ### Table 62.2 | S1024
M1024 Signal | Us | GND | SIN | REFSIN | Data+ | Data- | cos | REFCOS | Temp+
KTY | Temp-
KTY | | | |-----------------------|-----|-------|--------|--------|---------|-------|-------|--------|--------------|----------------|------|--------| | Colour | red | black | yellow | green | violett | blue | black | brown | grey | black
white | blue | yellow | | Cross section [mm²] | 0 | .5 | 0.14 | | | | | | | | | | # Connecting cables with flying leads and attached wiring connector for motor and motor feedback system ### Table 62.3 | Version | Part no. | Length [m] | |--------------------|--|---------------------------------| | H-S1024
H-M1024 | 309416
309417
309418
309419
309420
309421 | 5
10
15
20
25
30 | # CHA-xx-L-S1024 / L-M1024 ### Table 63.1 | Motor connector | 8 / M23 x1 | |-------------------|-------------------------------| | Cable plug | 8 / M23 x 1 / Part no. 303549 | | External diameter | ca. 26 mm | | Length | ca. 60mm | ### Table 63.3 | | | | СНА- | 20 / 25 / 32 | 2 / 40 / 50 |) / 58 | | | |---------------------|-----|-----------------------|------|--------------|-------------|--------|--------------|--------------| | Connector pin | 1 | 2 | 3 | 4 | А | В | С | D | | Motor phase | U | PE | W | V | BR+ | BR- | Temp+
PTC | Temp-
PTC | | Colour | red | red green white black | | | | brown | green | yellow | | Cross section [mm²] | | . (| 0.5 | | | 0. | 25 | | ### Illustration 63.2 ### Table 63.4 | Encoder connector | 12 / M23 x 1 | |-------------------|--------------------------------| | Cable plug | 12 / M23 x 1 / Part no. 305068 | | External diameter | ca. 26 mm | | Length | ca. 60 mm | ### Illustration 63.5 Table 63.6 | Connector pin | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |-----------------------|-----|-------|--------|--------|---------|-------|-------|--------|--------------|----------------|------|--------| | S1024
M1024 Signal | Us | GND | SIN | REFSIN | Data+ | Data- | COS | REFCOS | Temp+
KTY | Temp-
KTY | | | | Colour | red | black | yellow | green | violett | blue | black | brown | grey | black
white | blue | yellow | | Cross section [mm²] | 0 | .5 | | | | | | 0.14 | | | | | ## Connecting cables for the connection to YukonDrive® #### Table 63.7 | Version | Part no. | Length [m] | |--------------------|-------------------------------|--------------| | L-S1024
L-M1024 | 1004153
1004154
1004155 | 3
5
10 | # CHA-xx-N-RES / N-M128S / N-D2048 ### Table 64.1 | Motor connector | 8 / M17 x 1 | |-------------------|---------------------------------| | Cable plug | 8 / M17 x 1 / Part. no. 1011412 | | External diameter | ca. 22 mm | | Length | ca. 50 mm | ### Table 64.3 | | | | | CHA-14 | 4 / 17 | | | | |---------------------|-----|-------|-------|-----------------|--------|-------|-------------|-------------| | Connector pin | 1 | 6 | 7 | PE | 3 | 4 | 2 | 5 | | Motor phase | U | W | V | PE | BR+ | BR- | Temp
PTC | Temp
PTC | | Colour | red | white | black | green
yellow | black | white | blue | white | | Cross section [mm²] | | 0 | .34 | | | 0. | 15 | | ### Illustration 64.2 ### Table 64.4 | Encoder connector | 17 / M17 x 1 | |-------------------|----------------------------------| | Cable plug | 17 / M17 x 1 / Part. no. 1011413 | | External diameter | ca. 22 mm | | Length | ca. 50 mm | ### Illustration 64.5 Table 64.6 | Connector pin | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |----------------------------------|------------|------------|----------------|--------------|----------------|---------------|--------|----------------|----------------|-------|------------|------------|-------|--------|---------------|--------------|----| | RES Signal | SIN+ | SIN- | | | | | Vss- | Temp+
KTY | Temp-
KTY | Vss+ | COS+ | COS- | | | | | | | Colour | green | yellow | - | - | - | - | violet | grey | black
white | blue | black | brown | - | - | - | - | - | | Cross section [mm ²] | 0. | .15 | | | | | 0.15 | 0 | .15 | 0.15 | 0.1 | 15 | | | | | | | D2048 Signal | U+ | U- | V+ | V- | W+ | W- | GND | Up | Z+ | Z- | Α+ | A- | B+ | B- | | | | | Colour | green | white | white
black | white
red | white
brown | white
blue | black | red | blue | white | black | white | red | white | | | | | Cross section [mm²] | | | | | | | | | | | | | | | | | | | M128S Signal | A+
COS+ | A-
COS- | Data+ | n.c | Clock+ | n.c | GND | Temp+
KTY | Temp-
KTY | Up | B+
SIN+ | B-
SIN- | Data- | Clock- | GND
Sensor | Up
Sensor | | | Colour | red | white | green | - | blue | - | black | white
brown | white
blue | red | black | white | white | white | | | | | Cross section [mm ²] | | | 0.1 | 5 | | | 0.5 | 0 | .15 | 0.5 | | 0.1 | 15 | | | | | # CHA-xx-E-RES / E-M128S / E-D2048 ### Table 65.1 | Motor connector | 8 / M17 x 1 | |-----------------|---------------------------------| | Cable plug | 8 / M17 x 1 / Part. no. 1011412 | #
Illustration 65.2 ### Table 65.3 | | | | | CHA-14 | 4 / 17 | | | | |---------------|---|---|---|--------|--------|-----|-------------|-------------| | Connector pin | 1 | 6 | 7 | PE | 3 | 4 | 2 | 5 | | Motor phase | U | W | V | PE | BR+ | BR- | Temp
PTC | Temp
PTC | Table 65.4 | Encoder connector | 17 / M17 x 1 | |-------------------|----------------------------------| | Cable plug | 17 / M17 x 1 / Part. no. 1011413 | Illustration 65.5 ### Table 65.6 | Connector pin | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |---------------|------------|------------|-------|-----|--------|-----|------|--------------|--------------|------|------------|------------|-------|--------|---------------|--------------|----| | RES Signal | SIN+ | SIN- | | | | | Vss- | Temp+
KTY | Temp-
KTY | Vss+ | COS+ | COS- | | | | | | | D2048 Signal | U+ | U- | V+ | V- | W+ | W- | GND | Up | Z+ | Z- | A+ | A- | B+ | B- | Temp+
KTY | Temp-
KTY | | | M128S Signal | A+
COS+ | A-
COS- | Data+ | n.c | Clock+ | n.c | GND | Temp+
KTY | Temp-
KTY | Up | B+
SIN+ | B-
SIN- | Data- | Clock- | GND
Sensor | Up
Sensor | | ## Connecting cables with flying leads Table 65.7 | Variant | Туре | Part no. | Length[m] | |-----------|----------------|----------|-----------| | | | 1017289 | 3 | | | Motor cable | 1017292 | 5 | | CHA-E-RES | | 1017293 | 10 | | CHA-E-RES | | 1017290 | 3 | | | Resolver cable | 1017291 | 5 | | | | 1017294 | 10 | # 3.3.10 Options ### Position measuring system option EC The CHA Hollow Shaft Servo Actuators Series are ideally suited for equipping with a single turn absolute measuring system that can be connected directly to the actuator output. The ECN113 single turn absolute encoder is connected to the actuator flange by means of a torsionally stiff hollow shaft. Table 66.1 | Ordering code | Symbol | Unit | | | E | : | | | |--|-----------------|-----------------|------|-----|-------|-------|-----|-----| | Manufacturer's designation | | | | | ECN | 113 | | | | Protocol | | | | | EnDa | t 2.2 | | | | Power supply ¹⁾ | U _b | VDC | | | 5 ± ! | 5% | | | | Current consumption (max., without load) 1) | I | mA | | | 18 | 0 | | | | Incremental signals | U _{pp} | V _{ss} | | | 1 | | | | | Signal form | | | | | sinus | oidal | | | | Number of pulses | n ₁ | SIN / COS | | | 204 | 18 | | | | Absolute position / revolution (motor side) 3) | | | | | 819 | 12 | | | | Accuracy 1) | | arcsec | ± 20 | | | | | | | Resolution of the absolute value (output side) | phi | arcsec | | | 15 | 8 | | | | Resolution (output side) ²⁾ | phi | arcsec | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | ¹⁾ Source: Manufacturer - for rotation in clockwise direction, looking at the motor shaft - for rotation in counter clockwise direction, looking at the output flange The encoder system is connected using a standard signal connector. The evaluation of the compatibility of the measurement system must be checked prior to commissioning. The measuring system contains electrostatically sensitive components, please observe the ESD measures. Table 66.2 | Encoder connector | 17 / M23 x 1 | |-------------------|--------------------------------| | Cable plug | 17 / M23 x 1 / Part no. 270199 | | External diameter | ca. 26 mm | | Length | ca. 60 mm | Illustration 66.3 Table 66.4 | Connector pin | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |---------------------------|--------------|---|-----|---------------|-----|-----|----|---------|---------|---------|-----------------|----|----|--------|----|----|--------| | Signal | Up
Sensor | n.c | n.c | GND
Sensor | n.c | n.c | Up | CLOCK + | CLOCK - | GND | Inner
shield | B+ | B- | DATA + | Α+ | A- | DATA - | | Connecting Cables | | | | | | | | | | | | | | | | | | | SIMODRIVE | | | | | | | | 6FX80 | 02-2AD0 | 00-1xx0 | | | | | | | | | SINAMICS S 120
(SMC20) | | 6FX8002-2CH00-1xx0 | | | | | | | | | | | | | | | | | YukonDrive® | | Part no. 1010747 (3 m; other length on request) | | | | | | | | | | | | | | | | ³⁾ increasing position values ²⁾ for interpolation with 8 bit # 4. Actuator Selection Procedure # 4.1. Selection Procedure and Calculation Example ### Flowchart for actuator selection #### Equation 67.1 $$T_1 = T_L + \frac{2\pi}{60} \cdot \frac{(J_{out} + J_L) \cdot n_2}{t_1}$$ #### Equation 67.2 $$T_{2} = T_{L}$$ $$T_{3} = T_{L} \cdot (T_{1} - T_{L})$$ $$T_{rms} = \sqrt{\frac{T_{1}^{2} \cdot t_{1} + T_{2}^{2} \cdot t_{2} + T_{3}^{2} \cdot t_{3}}{t_{1} + t_{2} + t_{3} + t_{p}}}$$ #### Equation 67.3 $$n_{av} = \frac{\frac{n_2}{2^{t_1}} + n_2 \cdot t_2 + \cdot t_3 \frac{n_2}{2}}{t_1 + t_2 + t_3 + t_p}$$ #### Equation 67.4 ED = $$\frac{t_1 + t_2 + t_3}{t_1 + t_2 + t_3 + t_p} \cdot 100 \%$$ ### Pre selection conditions Table 68.1 | Load | Confirmation | Catalogue value | Unit | |--|----------------------|-------------------|--------| | Load max. rotation speed (n ₂) | ≤ n _{max} | Max. output speed | [rpm] | | Load moment of inertia (J _L) | $\leq 3J_{0ut}^{1)}$ | Moment of inertia | [kgm²] | $^{^{1)}}$ $J_{L} \leq 3 \cdot J_{0ut}$ is recommended for highly dynamic applications (high responsiveness and accuracy). ### Linear horizontal motion ### Illustration 68.2 #### Equation 68.3 $$J_{L} = J_{S} + m \left(\frac{P}{2\pi}\right)^{2} [kgm^{2}]$$ $$T_{L} = \frac{\mu \cdot m \cdot P \cdot g}{2\pi \cdot \eta} [Nm]$$ # Rotary motion #### Illustration 68.4 ### Equation 68.5 $$J_{L} = \frac{m}{8} \cdot D^{2} [kgm^{2}]$$ $$T_{L} = \mu \cdot m \cdot g \cdot r [Nm] g = 9,81 [m/s^{2}]$$ ### Illustration 68.6 # Example of actuator selection ### **Load Conditions** Assume servo mechanism is used to cyclically position a mass with a horizontal axis of rotation. Table 69.1 | Load rotation speed | n ₂ = 40 [rpm] | |--|---| | Load torque (e. g. friction) | T _L = 5 [Nm] | | Load inertia | $J_L = 1.3 \text{ [kgm}^2\text{]}$ | | Speed pattern | | | | | | Acceleration; Deceleration | t ₁ = t ₃ = 0.1 [s] | | Acceleration; Deceleration Operate with rated speed | $t_1 = t_3 = 0.1 [s]$
$t_2 = 0.1 [s]$ | | | | **Please note:** Each characteristic value should be converted to the value at the output shaft of the actuator. #### Illustration 69.2 ## Actuator data FHA-25C-50-L Table 69.3 | Max. Torque | T _{max} = 151 [Nm] | |-------------------|--------------------------------| | Max. Speed | n _{max} = 90 [rpm] | | Moment of inertia | J _{Out} = 0.86 [kgm²] | ### Actuator selection min⁻¹ ≙ rpm ED = 1min. ADVICE We will be pleased to make a gear calculation and selection on your behalf. Please contact our application engineers. # 4.2 Calculation of the Torsion Angle ### Equation 71.1 T≤T₁ $\varphi = \frac{T}{K_1}$ #### Equation 71.2 $T_1 < T \le T_2$ ### Equation 71.3 $T > T_2$ $\varphi = \frac{T_1}{K_1} + \frac{T_2 - T_1}{K_2} + \frac{T - T_2}{K_3}$ φ = Angle [rad] T = Torque [Nm] K = Stiffness [Nm/rad] ### Example T = 60 Nm $K_1 = 6.7 \cdot 10^4 \text{ Nm/rad}$ $T_1 = 29 \text{ Nm}$ $K_2 = 1.1 \cdot 10^5 \text{ Nm/rad}$ $T_2 = 108 \text{ Nm}$ $K_3 = 1.2 \cdot 10^5 \text{ Nm/rad}$ $$\phi = \frac{29 \text{ Nm}}{6.7 \cdot 10^4 \text{ Nm/rad}} + \frac{60 \text{ Nm} - 29 \text{ Nm}}{11 \cdot 10^4 \text{ Nm/rad}}$$ $\phi = 7,15 \cdot 10^{-4} \ rad$ ϕ = 2,5 arc min ### Equation 71.4 φ [arc min] = φ [rad] $\cdot \frac{180 \cdot 60}{\pi}$ # 4.3 Output Bearing ### 4.3.1 Lifetime calculation ### For oscillating motion The operating life at oscillating motion can be calculated using equation 72.1. #### Equation 72.1 $L_{\text{OC}} = \frac{10^6}{60 \cdot n_1} \cdot \frac{180}{\phi} \cdot \left(\frac{C}{f_w \cdot P_c}\right)^{\text{B}}$ with: L_{oc} [h] = Operating life for oscillating motion n_1 [cpm] = Number of oscillations/minute* C [N] = Dynamic load rating, see table "Output Bearing" in the appropriate product chapter $P_{c}[N] = Dynamic equivalent load$ ϕ [Degree] = Oscillating angle f_w = Operating factor * one oscillation means 2ϕ #### Illustration 72.2 ### Oscillating angle At oscillating angles < 5° fretting corrosion may occur due to insufficient lubrication. In this case please contact our sales engineer for counter- Bearing type of selected products see "Output Bearing Ratings" in the appropriate product chapter. #### Table 72.3 | Type of bearing | В | |----------------------|------| | Cross roller bearing | 10/3 | | Four point bearing | 3 | ### For continuous operation The operating life of the output bearing can be calculated using equation 72.3. #### Equation 72.4 measures. $$L_{10} = \frac{10^6}{60 \cdot n_{av}} \cdot \left(\frac{C}{f_w \cdot P_C}\right)^B$$ with: $L_{10} [h] = Operating life$ $n_{av} [rpm] = Average output speed$ C [N] = Dynamic load rating, see table "Output Bearing Ratings" $P_{C} [N] = Dynamic equivalent load$ $f_{w} = Operating factor$ # Average output speed $$n_{av} = \frac{|n_1|t_1 + |n_2|t_2 + ... + |n_n|t_n}{t_1 + t_2 + ... + t_n + t_p}$$ ### Table 72.5 | Load conditions | f _w | |--------------------------------|----------------| | No impact loads or vibrations | 11.2 | | Normal rotating. normal loads | 1.2 1.5 | | Impact loads and/or vibrations | 1.5 3 | #### Dynamic equivalent load #### Equation 73.1 $$P_C = x \cdot \left(F_{rav} + \frac{2M}{dp}\right) + y \cdot F_{aav}$$ #### Equation 73.2 $$F_{\mathsf{rav}} = \left(\frac{|n_1| \cdot t_1 \cdot (\mid F_{r1} \mid)^8 + |n_2| \cdot t_2 \cdot (\mid F_{r2} \mid)^8 + \ldots + |n_n| \cdot t_n \cdot (\mid F_{rn} \mid)^8}{|n_1| \cdot t_1 + |n_2| \cdot t_2 + \ldots + |n_n| \cdot t_n} \right)^{1/B}$$ #### Equation 73.3 $$F_{aav} = \left(\frac{|n_1| \cdot t_1 \cdot (\mid F_{a1} \mid)^B + |n_2| \cdot t_2 \cdot (\mid F_{a2} \mid)^B + ... + |n_n| \cdot t_n \cdot (\mid F_{an} \mid)^B}{|n_1| \cdot t_1 + |n_2| \cdot t_2 + ... + |n_n| \cdot
t_n} \right)^{1/B}$$ with: $F_{rav}\left[N\right]$ Radial force $F_{aav}\left[N\right]$ Axial force $d_p[m]$ Pitch circle Radial load factor (Table 73.4) Axial load factor (Table 73.4) Tilting moment Μ #### Table 73.4 | Load factors | x | У | |--|------|------| | $\frac{F_{aav}}{F_{rav} + 2 \cdot M / dp} \le 1.5$ | 1 | 0.45 | | $\frac{F_{aav}}{F_{rav} + 2 \cdot M / dp} > 1,5$ | 0.67 | 0.67 | #### Illustration 73.5 #### Illustration 73.6 #### Please note: ${\sf F}_{\rm nx}$ represents the maximum radial force. ${\sf F}_{\rm ax}$ represents the maximum axial force. ${\sf t}_{\rm p}$ represents the pause time between cycles. # 4.3.2 Angle of Inclination The angle of inclination of the output flange, as a function of the tilting moment acting on the output bearing, can be calculated by means of equation 74.1: #### Equation 74.1 $$\gamma = \frac{M}{K_B}$$ with: $\begin{array}{lll} \text{Volume} \\ \gamma \left[\text{arcmin} \right] &=& \text{Angle of inclination of the output flange} \\ \text{M [Nm]} &=& \text{Tilting moment acting on the output bearing} \\ \text{K}_{\text{B}} \left[\text{Nm/arcmin} \right] &=& \text{Moment stiffness of the output bearing} \end{array}$ ## 5. Installation and Operation ## 5.1 Transport and Storage The transportation of the servo actuators and motors should always be in the original packaging. If the servo actuators and motors are not put into operation immediately after delivery, they should be stored in a dry, dust and vibration-free environment. Storage should be for no longer than 2 years at room temperatures (between +5° C ... +40° C) so that the grease life is preserved. # INFORMATION Tensile forces in the connecting cable must be avoided. ## 5.2 Installation Check the performance and protection and check the suitability of the conditions at the installation site. Take suitable constructive measures to ensure that no liquid (water, drilling emulsion, coolant) can penetrate the output bearing or encoder housing. #### ADVICE The installation must be protected against impact and pressure on the gear. The mounting must be such that heat loss can be adequately dissipated. No radial forces and axial forces may act to the protection sleeve of the hollow shaft actuator. During installation, the actuator must be fitted ensuring the machine housing can be rotated without terminals. Already low terminals may affect the accuracy of the gear and, should this be the case, the installation of the machine housing should be checked. #### 5.3 Mechanical Installation The data necessary for mounting the actuator and for connecting to the load are given in table 45.1. Table 75.1 | | Symbol
[Unit] | CHA-14A | CHA-17A | CHA-20A | CHA-25A | CHA-32A | CHA-40A | CHA-50A | CHA-58A | |-------------------------|------------------|---------|---------|---------|---------|---------|---------|---------|---------| | Load assembly | | | | | | | | | | | Number of screws | | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Screw size | | МЗ | M4 | M4 | M5 | M6 | M8 | M10 | M10 | | Screw quality | | 12.9 | 12.9 | 12.9 | 12.9 | 12.9 | 12.9 | 12.9 | 12.9 | | Pitch circle diameter | [mm] | 43 | 52 | 62 | 76 | 96 | 118 | 152 | 175 | | Screw tightening torque | [Nm] | 2.3 | 5.1 | 5.1 | 10 | 17 | 42 | 83 | 83 | | Transmittable torque | [Nm] | 85 | 188 | 228 | 463 | 847 | 1964 | 4086 | 4688 | | Housing assembly | | | | | | | | | | | Number of screws | | 8 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Screw size | | M3 | М3 | МЗ | M4 | M5 | M6 | M8 | M10 | | Screw quality | | 12.9 | 12.9 | 12.9 | 12.9 | 12.9 | 12.9 | 12.9 | 12.9 | | Pitch circle diameter | [mm] | 68 | 80 | 89 | 105 | 135 | 168 | 206 | 236 | | Screw tightening torque | [Nm] | 2.3 | 2.3 | 2.3 | 5.1 | 10 | 17 | 42.2 | 83 | | Transmittable torque | [Nm] | 89 | 158 | 177 | 378 | 805 | 1482 | 3419 | 6317 | Data valid for completely degreased connecting interfaces (friction coefficient µ = 0.15). Screws to be secured against loosening. We recommend LOCTITE 243 to secure screws. ## 5.4 Electrical Installation All work should be carried out with power off. Electric servo actuators and motors have dangerous live and rotating parts. All work during connection, operation, repair and disposal must be carried out only by qualified personnel as described in the standards EN50110-1 and IEC 60364! Before starting any work, and especially before opening covers, the actuator must be properly isolated. In addition to the main circuits, the user also has to pay attention to any auxilliary circuits. #### Observing the five safety rules: - Disconnect mains - Prevent reconnection - Test for absence of harmful voltages - Ground and short circuit - Cover or close off nearby live parts The measures taken above must only be withdrawn when the work has been completed and the device is fully assembled. Improper handling can cause damage to persons and property. The respective national, local and factory specific regulations must be adhered to. Due to the fact that the motor contains permanent magnets, a voltage is generated at the motor terminals when the rotor is turned. #### **ADVICE** - The connecting leads should be suitable for the type of use, as well as the voltages and amperages concerned. - The protective earth must be connected to the terminal marked PE. - All cables used should be provided with a shield and in addition, the encoder cable should feature twisted pair leads. - The power supply is switched off before connecting and disconnecting the power connection and signal connections. ADVICE Encoders and sensors contain electrostatically sensitive components, observe the ESD measures! ## 5.5 Commissioning #### NOTE #### Commissioning must be executed in accordance with the documentation of Harmonic Drive AG. #### Before commissioning, please check that: - · The actuator is properly mounted, - · All electrical connections and mechanical connections are designed according to requirements, - The protective earth is properly connected, - All attachments (brakes, etc) are operational, - Appropriate measures have been taken to prevent contact with moving and live parts, - The maximum speed nmax is specified and cannot be exceeded, - The set up of the drive parameters has been executed, - The commutation is adjusted correctly. # **⚠** ATTENTION Check the direction of rotation of the load uncoupled. In the event of changes in the normal operating behaviour, such as increased temperature, noise or vibration, switch the actuator off. Determine the cause of the problem and contact the manufacturer if necessary. Even if the actuator is only on test, do not put safety equipment out of operation. This list may not be complete. Other checks may also be necessary. #### ADVICE Due to heat generation from the actuator itself, tests outside the final mounting position should be limited to 5 minutes of continuous running at a motor speed of less than 1000 rpm. These values should not be exceeded in order to avoid thermal damage to the actuator. #### 5.6 Overload Protection Temperature sensors are integrated into the servo actuators and motors to protect them from. To protect the servo actuators and motors from temperature overload sensors are integrated into the motor windings. The temperature sensors alone do not guarantee motor protection. Protection against overload of the motor winding is only possible only with an input speed > 0. For special applications (eg load at standstill or very low speed) is an additional overload protection by limiting the overload period. The built specification of the integrated temperature sensors can be found in the technical data. against overload by the use of I²t monitoring integrated in the controller. The graph shows an example of the overload characteristic for the I²t monitoring. The overload factor is the ratio between the actual RMS current and continuous stall current. ## 5.7 Protection against Corrosion and Penetration of Liquids and Debris #### Table 78.1 | | CHA-xxA | |----------------------|---------------| | Corrosion protection | IEC 68 2-11 | | Salt spray test | Test time 4 h | The product is fully protected provided that the connectors are correctly attached. Corrosion from the ambient atmosphere (condensation, liquids and gases) at the running surface of the output shaft seal is prevented. Contact between sharp edged or abrasive objects (cutting chips, splinters, metallic or minerals dusts etc) and the output shaft seal must be prevented. Permanent contact between the output shaft seal and a permanent liquid covering should also be prevented. A change in the operating temperature of a completely sealed actuator can lead to a pressure differential between the outside and the inside temperature of the actuator. This can cause any liquid covering the output shaft seal to be drawn into the housing which could cause corrosive damage. As a countermeasure, we recommend the use of an additional shaft seal (to be provided by the user) or the maintenance of a constant pressure inside the actuator. Please contact Harmonic Drive AG for further information. #### ADVICE Specification sealing air: constant pressure in the actuator as described above; the supplied air must be dry and filtered with pressure at not more than 10⁴ Pa. #### 5.8 Shutdown and Maintenance # In case of malfunctions or maintenance measures, or to shutdown the motors, proceed as follows: - 1. Follow the instructions in the machine documentation. - 2. Bring the actuator on the machine to a controlled standstill. - 3. Turn off the power and the control voltage on the controller. - 4. For motors with a fan unit; turn off the motor protection switch for the fan unit. - 5. Turn off the mains switch of the machine. - 6. Secure the machine against accidental movement and against unauthorised operation. - 7. Wait for the discharge of electrical systems then disconnect all the electrical connections. - 8. Secure the motor, and possibly the fan unit,
before disassembly against falling or movement then pay attention to the mechanical connections. ## Risk of death by electric voltages. Work in the area of live parts is extremely dangerous. • Work on the electrical system may only be performed by qualified electricians. The use of a power tool is absolutely necessary. #### Observing the five safety rules: - Disconnect mains - Prevent reconnection - Test for absence of harmful voltages - Ground and short circuit - Cover or close off nearby live parts The measures taken above must only be withdrawn when the work has been completed and the device is fully assembled. Improper handling can cause damage to persons and property. The respective national, local and factory specific regulations must be adhered to. #### Burns from hot surfaces with temperatures of over 100° C Let the motors cool down before starting work. Cooling times of up to 140 minutes may be necessary. Wear protective gloves. Do not work on hot surfaces! #### Persons and property during maintenance and operation Never perform maintenance work on running machinery. Secure the system during maintenance against re-starting and unauthorised operation. #### Cleaning Excessive dirt, dust or chips may adversely affect the operation of the device and can, in extreme cases, lead to failure. At regular intervals you should therefore, clean the device to ensure a sufficient dissipation of the surface heat. Insufficient heat emissions can have undesirable consequences. The lifetime of the device is reduced if temperature overloads occures. Overtemperature can lead to the shutdown of the device. 10/18854 10/2014 79 #### Checking of electric connections #### Lethal electric shock by touching live parts! In any case of defects of the cable sheath the system must be shut down immediately and the damaged cable should be replaced. Do not make any temporary repairs on the connection cables. - Connection cord should be periodically checked for damage and replaced if necessary. - Check optionally installed power chains (power chains) for defects. - Protective conductor connections should be in a good condition and tightness checked at regular intervals. Replace if necessary. #### Control of mechanical fasteners The fastening screws and the load of the housing must be checked regularly. # 6. Decommissioning and Disposal The servo actuators and motors from Harmonic Drive AG include lubricants, electronic components and printed circuit boards. Since lubricants (greases and oils) are considered hazardous substances in accordance with health and safety regulations, it is necessary to dispose of the products correctly. Please ask for safety data sheet where necessary. ## 7. Glossary ## 7.1 Technical Data ## AC Voltage constant k_{FM} [V_{rms} / 1000 rpm] Effective value of the induced motor voltage measured at the motor terminals at a speed of 1000 rpm and an operating temperature of 20° C. #### Ambient operating temperature [° C] The intended operating temperature for the operation of the drive. # Average input speed (grease lubrication) n_{av (max)} [rpm] Maximum permissible average gear input speed for grease lubrication. ## Average input speed (oil lubrication) n_{av (max)} [rpm] Maximum permissible average gear input speed for oil lubrication. #### Average torque T_A [Nm] When a variable load is applied to the gear, an average torque should be calculated for the complete operating cycle. This value should not exceed the specified T_{Δ} limit. #### Backlash (Harmonic Planetary gears) [arcmin] When subjected to the rated torque, Harmonic Planetary gears display characteristics shown in the hysteresis curve. When a torque is applied to the output shaft of the gear with the input shaft locked, the torque-torsion relationship can be measured at the output. Starting from point 0 the graph follows successive points A-B-A-B-A A where the value B-B is defined as the backlash or hysteresis. #### Brake closing time t_r [ms] Delay time to close the brake. # Brake current to hold $I_{HBr}[A_{nc}]$ Current for applying the brake. ## Brake current to open $I_{OBr}[A_{DC}]$ Current required to open the brake. #### Brake holding torque T₁ [Nm] Torque the actuator can withstand when the brake is applied, with respect to the output. ### Brake opening time t_o [ms] Delay time for opening the brake. # Brake voltage U_{Br} [VDC] Terminal voltage of the holding brake. 10/18854 10/2014 81 ## Collision torque T_M [Nm] In the event of an emergency stop or collision, the Harmonic Drive® Gearing may be subjected to a brief collision torque. The magnitude and frequency of this collision torque should be kept tom a minimum and under no circumstances should the collision torque occur during the normal operating cycle. ## Continuous stall current I_n [A_{rms}] Effective value of the motor phase current to produce the stall torque. ### Continuous stall torque T_n [Nm] Allowable actuator stall torque. ## Demagnetisation current I_F [A_{rms}] Current at which rotor magnets start to demagnetise. # Dynamic axial load F_{A dyn (max)} [N] With bearing rotating this is the maximum allowable axial load, with no additional radial forces or tilting moments applied. #### Dynamic load rating C [N] Maximum dynamic load that can be absorbed by the output bearing before permanent damage may occur. # Dynamic radial load $F_{R \text{ dyn (max)}}[N]$ With bearing rotating this is the maximum allowable radial load, with no additional axial forces or tilting moments applied. # Dynamic tilting moment $M_{dyn (max)}$ [Nm] With the bearing rotating this is the maximum allowable tilting moment, with no additional axial forces or radial forces applied. ## Electrical time constant τ_{α} [s] The electrical time constant is the time required for the current to reach 63% of its final value. ## Hollow shaft diameter du [mm] Free inner diameter of the continuous axial hollow shaft. ## Inductance (L-L) L_{I-I} [mH] Terminal inductance calculated without taking into account the magnetic saturation of the active motor parts. #### Lost Motion (Harmonic Drive® Gearing) [arcmin] Harmonic Drive® Gearing exhibits zero backlash in the teeth. Lost motion is the term used to characterise the torsional stiffness in the low torque region. The illustration shows the angle of rotation ϕ measured against the applied output torque as a hysteresis curve, with the Wave Generator locked. The lost motion measurement of the gear is taken with an output torque of about $\pm\,4\%$ of the rated torque. # $\mathsf{Maximum}\;\mathsf{current}\;\mathsf{I}_{\mathsf{max}}\;\mathsf{[A]}$ The maximum current is the maximum current that can be applied for a short period. # Maximum DC bus voltage $U_{DC (max)}[VDC]$ The maximum DC bus power supply for the correct operation of the actuator. This value may only be exceeded for a short period during the braking or deceleration phase. # Maximum hollow shaft diameter $d_{H\,(max)}\,[mm]$ For gears with a hollow shaft, this value is the maximum diameter of the axial hollow shaft. ## Maximum input speed (grease lubrication) n_{in (max)} [rpm] Maximum allowed input speed for gearing with grease lubrication. # Maximum input speed (oil lubrication) n_{in (max)} [rpm] Maximum allowed input speed for gearing with oil lubrication. # Maximum motor speed n_{max} [rpm] The maximum allowable motor speed. # Maximum output speed n_{max} [rpm] The maximum output speed. Due to heating issues, this may only be momentarily applied during the operating cycle. The maximum output speed can occur any number of times as long as the rated speed is greater than the permissible continuous operation calculated in the duty cycle. ## Maximum output torque T_{max} [Nm] Specifies the maximum allowable acceleration and deceleration torques. For highly dynamic processes, this is the maximum torque available for a short period. The maximum torque can be parameterized by the control unit where the maximum current can be limited. The maximum torque can be applied as often as desired, as long as the average torque is within the permissible continuous operation calculated in the duty cycle. ## Maximum power P_{max} [W] Maximum power output. ## Mechanical time constant τ_m [s] The mechanical time constant is the time required to reach 63% of its maximum rated speed in a no-load condition. #### Moment of inertia J [kgm²] Mass moment of inertia at motor side. #### Moment of inertia J_{in} [kgm²] Mass moment of inertia of the gearing with respect to the input. # Moment of inertia J_{out} [kgm²] Mass moment of inertia with respect to the output. ## Motor terminal voltage (Fundamental wave only) U_M [V_{rms}] Required fundamental wave voltage to achieve the specified performance. Additional power losses can lead to restriction of the maximum achievable speed. #### Number of pole pairs p Number of magnetic pole pairs on the rotor of the motor. #### Offset R [mm] Distance between output bearing and contact point of load. ## Pitch circle diameter d_n [mm] Pitch circle diameter of the output bearing. #### Protetcion IP The degree of protection according to EN 60034-5 provides suitability for various environmental conditions. ## Rated current I_N [A] Rms value of the sinusoidal current when driven at rated torque and rated speed. #### Rated motor speed n_N [rpm] The motor speed which can be continuously maintained when driven at rated torque T_N , when mounted on a suitably dimensioned heat sink. ### Rated power P_N [W] Output power at rated speed and rated torque. #### Rated speed n, [rpm] The output speed which can be continuously maintained when driven at rated torque T_N , when mounted on a suitably dimensioned heat sink. ## Rated torque T_N [Nm], Servo The output torque which can be continuously transmitted when driven at rated input speed, when mounted on a suitably dimensioned heat sink. ## Rated torque T_N [Nm], Mechanic The rated torque is a reference torque for the
calculation of the gear life. When loaded with the rated torque and running at rated speed the gear will reach the average life L_{so} . The rated torque T_{N} is not used for the dimensioning of the gear. ## Rated voltage U_N [V_{rms}] Supply voltage for operation with rated torque and rated speed. #### Ratio i [] The ratio is the reduction of input speed to the output speed. Note for Harmonic Drive® transmission: The standard version of the wave is generating the drive element, the output element of the flexspline and the circular Spline is fixed to the housing. Since the direction of rotation of the drive (Wave Generator) to output reverses (Flexspline), a negative ratio for results Calculations in which the direction of rotation must be considered. #### Repeatability [arcmin] The repeatability of the gear describes the position difference measured during repeated movement to the same desired position from the same direction. The repeatability is defined as half the value of the maximum difference measured, preceded by a \pm sign. ## Repeatable peak torque T_R [Nm] Specifies the maximum allowable acceleration and braking torques. During the normal operating cycle the repeatable peak torque $T_{\scriptscriptstyle R}$ should be not be exceeded. ## Resistance (L-L, 20° C) R_{I-I} [Ω] Winding resistance measured between two conductors at a winding temperature of 20° C. #### Size #### 1) Actuators / Gears with Harmonic Drive® gears or Harmonic Planetary gears The frame size is derived from the pitch circle diameter of the gear teeth in inches multiplied by 10. #### 2) CHM Servo motor series The size of the CHM servo motors is derived from the stall torque in Ncm. #### 3) Direct drives from the TorkDrive® series The size of the TorkDrive® series is the outer diameter of theiron core of the stator. #### Static load rating C_n [N] Maximum static load that can be absorbed by the output bearing before permanent damage may occur. ## Static tilting moment M_n [Nm] With the bearing stationary this is the maximum allowable radial load, with no additional axial forces or tilting moments applied. ## Tilting moment stiffness K_R [Nm/arcmin] The tilting angle of the output bearing at an applied moment load. ## Torque constant (motor) k_{TM} [Nm/A_{rms}] Quotient of stall torque and stall current. # Torque constant (output) k_{Tout} [Nm/A_{rms}] Quotient of stall torque and stall current, taking into account the transmission losses. # Torsional stiffness (Harmonic Drive® Gears) K₃ [Nm/rad] The amount of elastic rotation at the output for a given torque and the Wave Generator blocked. The torsional stiffness ${\rm K_3}$ describes the stiffness above a defined reference torque where the stiffness is almost linear. Values below this torque can be requested or found on our web site. The value given for the torsional stiffness $\rm K_3$ is an average that has been determined during numerous tests. The limit torques $\rm T_1$ and $\rm T_2$ and calculation example for the total torsional angle Gesamtverdrehwinkels can be found in the secondary technical documentation. The amount of elastic rotation at the output for a given torque and blocked input shaft. The torsional rigidity of the Harmonic Planetary gear describes the rotation of the gear above a reference torque of 15% of the rated torque. In this area the torsional stiffness is almost linear. ## Transmission accuracy [arcmin] The transmission accuracy of the gear represents a linearity error between input and output angle. The transmission accuracy is measured for one complete output revolution using a high resolution measurement system. The measurements are carried out without direction reversal. The transmission accuracy is defined as the sum of the maximum positive and negative differences between theoretical and actual output rotation angle. #### Weight m [kg] The weight specified in the catalog is the net weight without packing and only applies to standard versions. # 7.2 Labelling, Guidelines and Regulations ## **CE-Marking** With the CE marking, the manufacturer or EU importer declares in accordance with EU regulation, that by affixing the CE mark the product meets the applicable requirements in the harmonization legislation established the Community. ## **REACH Regulation** REACH is a European Community Regulation on chemicals. REACH stands for Registration, Evaluation, Authorization and Restriction of Chemicals. #### **RoHS EU Directive** The RoHS EU Directive on the restriction of the use of certain hazardous substances in electrical and electronic equipment. # 8.1 Declaration of Conformity CHA-14A ... CHA-17A ## EG-Konformitätserklärung **EC Declaration of Conformity** Hersteller, Manufacturer: Harmonic Drive AG Anschrift, Address Hoenbergstraße 14 65555 Limburg Produktbezeichnung: Servoantrieb CHA-14A/17A (in Standardbauform) Servomotor CHM-0030A/0070A (in Standardbauform) Product description: Servo Actuator CHA-14A/17A (standard version) Servo Motor CHM-0030A/0070A (standard version Die oben bezeichneten Produkte stimmen in der von uns in Verkehr gebrachten Ausführung mit den Vorschriften folgender Europäischer Richtlinien überein. The products described above in the form as delivered are in conformity with the provisions of the following European Directives. 2014/35/EG 2014/35/EC Elektrische Betriebsmittel zur Verwendung innerhalb bestimmter Spannungsgrenzen. Electrical equipment designed for use within certain voltage limits. Die Konformität wird nachgewiesen durch die Einhaltung nachfolgender Normen. Conformity is assured through the application of the following Standards. - EN 60034-1/2010 - EN 61800-5-1/2008 - EN 60664-1/2008 2004/108/EG Elektromagnetische Verträglichkeit. 2004/108/EC Electromagnetic compatibility. Die Konformität wird nachgewiesen durch die nachfolgender Normen. Conformity is assured through the application of the following Standards. • EN 61800-3/2012 2011/65/EG Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten. 2011/65/EC Restriction of the use of certain hazardous substances in electrical and electronic equipment. Die Sicherheitshinweise und die technischen Dokumentation sind zu beachten. The safety requirements and the technical documentation have to be considered. CE-Kennzeichnung/ CE marking: July 2013 Limburg, 01.08.2014 i. V. Ralf Falk Leiter Konstruktion und Entwicklung Servotechnik Section Manager Design and Development Servo Drives A. Alois Buss Produktmanager Servotechnik **Product Manager Servo Drives** Rev.: 06/12 #### EG-Konformitätserklärung **EC Declaration of Conformity** Hersteller, Manufacturer: Harmonic Drive AG Anschrift, Address Hoenbergstraße 14 65555 Limburg Produktbezeichnung: Servoantrieb CHA-20A~58A (in Standardbauform) Servomotor CHM-0083A~1100A (in Standardbauform) Product description: Servo Actuator CHA-20A~58A (standard version) Servo Motor CHM-0083A~1100A (standard version) Die oben bezeichneten Produkte stimmen in der von uns in Verkehr gebrachten Ausführung mit den Vorschriften folgender Europäischer Richtlinien überein. The products described above in the form as delivered are in conformity with the provisions of the following European Directives. 2014/35/EG 2014/35/EC Elektrische Betriebsmittel zur Verwendung innerhalb bestimmter Spannungsgrenzen. Electrical equipment designed for use within certain voltage limits. Die Konformität wird nachgewiesen durch die Einhaltung nachfolgender Normen. Conformity is assured through the application of the following Standards. - EN 60034-1/2010 - EN 61800-5-1/2008 - EN 60664-1/2008 2004/108/EG Elektromagnetische Verträglichkeit. 2004/108/EC Electromagnetic compatibility. Die Konformität wird nachgewiesen durch die nachfolgender Normen. Conformity is assured through the application of the following Standards. • EN 61800-3/2012 Die Sicherheitshinweise und die technischen Dokumentation sind zu beachten. The safety requirements and the technical documentation have to be considered. CE-Kennzeichnung/ CE marking: January 2006 Limburg, 01.08.2014 i. V. Ralf Falk Leiter Konstruktion und Entwicklung Servotechnik Section Manager Design and Development Servo Drives i. A. Alois Buss Produktmanager Servotechnik **Product Manager Servo Drives** Rev.: 06/12 ...just move it!